| Introduction | Detector design | Simulations and analysis | Status and summary |
|--------------|-----------------|--------------------------|--------------------|
|              |                 |                          |                    |
|              |                 |                          |                    |

# Compton Scattering on He-3 With an Active Target

Bruno Strandberg

The University of Glasgow

June 17, 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

| Introduction | Detector design | Simulations and analysis | Status and summary |
|--------------|-----------------|--------------------------|--------------------|
| •            | 88              | 00000                    | 88                 |
| Introduction |                 |                          |                    |

Measure the cross-section  $\frac{d\sigma(\omega)}{d\Omega}$  of Compton scattering on He-3 with  $E_{\gamma}$  from 50 to 200 MeV:

$$\gamma + {}^{3}\text{He} \rightarrow \gamma' + {}^{3}\text{He}'.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Motivation: Access the nucleon *polarisabilities*. Polarisabilities measure the response of the nucleon to an external electromagnetic field.

| Introduction<br>0 | Detector design<br>●0 | Simulations and analysis | Status and summary |
|-------------------|-----------------------|--------------------------|--------------------|
| Detector of       | design                |                          |                    |

#### He Gas Scintillator Active Target design

$$\gamma + {}^{3}\mathrm{He} \rightarrow \gamma' + {}^{3}\mathrm{He'}.$$

The Active Target allows the detection of  $\mathrm{E}_{^{3}\mathrm{He'}}.$ 

Ideally you then have:

- $E_{\gamma}$  from photon tagger.
- $E_{\gamma'}$  from detectors.
- $E_{^{3}He'}$  from the Active Target.

| Introduction<br>0 | Detector design<br>●0 | Simulations and analysis | Status and summary |
|-------------------|-----------------------|--------------------------|--------------------|
| Detector of       | design                |                          |                    |

### He Gas Scintillator Active Target design

$$\gamma + {}^{3}\mathrm{He} \rightarrow \gamma' + {}^{3}\mathrm{He}'.$$

The Active Target allows the detection of  $E_{^{3}He'}$ .

Ideally you then have:

- $E_{\gamma}$  from photon tagger.
- $E_{\gamma'}$  from detectors.
- $\bullet~E_{^{3}He^{\prime}}$  from the Active Target.



Simulations and analysis

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



Figure : Geant4 simulation of the new active target design.

SiPM - Silicon PhotoMultiplier

| Simulations a | nd analysis     |                          |                    |
|---------------|-----------------|--------------------------|--------------------|
| Introduction  | Detector design | Simulations and analysis | Status and summary |
| O             | 00              | ●0000                    | 00                 |

The important questions:

- Can one detect a sufficient fraction of photons to extract energy deposition?
  - ${\small 0} \ \ \, \mbox{Do SiPMs}$  detect scintillation light in pressurised vessel?  $\rightarrow$  Test
  - **②** Does the target geometry allow enough scintillation photons to be detected by the SiPMs?  $\rightarrow$  **Simulate**

**②** Do the He-3 atoms stop inside the gas?  $\rightarrow$  **Simulate** 

## Question 1.2 - Does the target geometry allow enough scintillation photons to be detected by the SiPMs?

Many small details, but the main parameters in the simulation affecting photon acceptance:



3. Scintillation yield (essential, assuming 250 phot per MeV)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

## Question 1.2 - Does the target geometry allow enough scintillation photons to be detected by the SiPMs?

Detection efficiency: 7.1% of photons detected. How many scintillation photons created per event, is 7.1% detection enough for  $\rm E_{^{3}He'}$  extraction?



Highly dependent on scintillation yield (used 250 per MeV), needs further investigation.



Created  $5 * 10^6$  Compton events into full Z of the target, incoming  $E_{\gamma}$  from 50 to 200 MeV. Set cut values

 $|E_{\gamma} - E_{\gamma'} - E_{\text{He3}'}| \ll 1 \text{ MeV} \text{ and } E_{\text{He3}'} \gg 1 \text{ MeV}$ 





#### **Question 2 - Do the He-3 atoms stop inside the gas?** Stop position of He-3 atoms for events not inside Compton cuts.

Stop position of He-3 not in Compton cuts



◆□> ◆□> ◆三> ◆三> ・三 のへの

| Introduction | Detector design | Simulations and analysis | Status and summary |
|--------------|-----------------|--------------------------|--------------------|
| O            | 00              |                          | ●0                 |
| Status and s | ummary          |                          |                    |

The important questions:

- Can one detect a sufficient fraction of photons to extract energy deposition?

  - O Does the target geometry allow enough scintillation photons to be detected by the SiPMs? →
    Simulations → about 7.1% detected. Dependent on SiPM noise performance, but seems to suggest the design is feasible.
- Oo the He-3 atoms stop inside the gas? → According to simulations stop reasonably well below E<sub>γ</sub> 200MeV. Strongly dependent on gas pressure.

| Introduction | Detector design | Simulations and analysis | Status and summary |
|--------------|-----------------|--------------------------|--------------------|
| O            | 00              |                          | ○●                 |
|              |                 |                          |                    |

Where to go from here:

- Thorough study of SiPMs noise.
- Build the Active Target.
- After simulation is calibrated against the built Active Target, more precise studies with other apparatus included + background channels.

Thank you for your attention!