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Part 1
• Computational Science in General

• Parallel Computing
- Computing

- Hardware Trends

- Multi-Core Chips and GPUs

- Very brief introduction to parallel programming
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HPC In Science & Engineering
• The “3rd Pillar of Science and Engineering”

Theory ExperimentComputation

SCIENCE  & ENGINEERING 
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HPC In Science
• The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment

- Virtual experiment where 

- real controlled experiments are not possible 

- or may be perhaps hazardous

- real experiment can be expensive

• engineering and design applications

• Can be Data Driven

- E.g. Planck Satellite Analysis, CERN data analysis

• Or Driven by Computation

- Evolve Simulations of Physical Systems
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HPC Cycle
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Implementation

“Production”: 
perform 

computation

Answer



Thomas Jefferson National Accelerator Facility

HPC Cycle

e
��
2 P̂ e

��
2 P̂

e��Q̂

e
��
2 P̂ e��Q̂e

��
2 P̂

Science Question

Pose computational question Develop/Collect Computational Algorithms

Software 
Implementation

“Production”: 
perform 

computation

Answer

Domain Application
Applied Maths

Data 
management and 

Analysis

Programming 
Libraries/

Frameworks 
Debugging 

Performance, 
V&V
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Parallel Computing
• These days, high performance computing is parallel computing
- “Several tasks are accomplished concurrently”

• This is partially hardware driven (see later)

• However, many tasks are naturally parallel
- “Embarassingly Parallel”: a collection of independent tasks

• e.g. event analysis, ray tracing, LQCD contractions

• parallelism brings throughput 

- Highly Coupled:  tasks that interact and need coordination

• e.g. Finite Difference Stencils, Molecular Dynamics

• parallelism increases speed of single problem

- Mixtures of the two: e.g. LQCD propagator calculation
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Computer Basics
• Read-Execute-Write
- read data from Memory into the Processor

- processor executes Computation

- result is written back to Memory

• Processor contains
- Compute components (e.g. Add/Multiply Floating Point units)

- Registers

• Floating point unit reads input and writes output to registers

- Caches 

• Hold data read from memory, in case it is needed again 
soon

Memory

Registers

Processor Core
Add/Multiply

Caches
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Processor Performance Trends
• The number of transistors is still 

doubling every 18 months or so
- Moore’s law

• But both clock speeds and single 
thread performance are flattening 
- have flattened

• Power consumption needs to remain 
flat 
- only so much power from the wall-plugs

• Really the only way to get higher 
performance is through a greater 
number of cores and parallelism
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Multi-Core Chips
• Power use grows with clock frequency
- cannot make clocks faster

• But transistor density is still growing
- can add more cores

• Multi-core chips
- replicate cores on silicon

- often add extra ‘shared’ cache and on 
chip interconnect

• Current generations
- up to 18 cores per chip (Socket)

- up to 4 sockets per server

Memory

Registers

Processor Core
Add/Multiply

Caches

Registers

Processor Core
Add/Multiply

Caches
Caches

Interconnect
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GPUs
• If one wants
- high floating point throughput

- at low power (High FLOP/Watt)

• Use the silicon area for more floating point units
- reduce/eliminate chip real estate regular cores reserve 

for latency hiding

- use the space for floating point processors 

- hide latencies through massive parallelism

• NVIDIA Kepler architecture
- SMX multiprocessing engine: 192 single precision 

cores, 64 double precision cores
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GPUs
• A GPU Chip is made of 15+ SMXs
- K20X Peak perf:  1.31 TF (DP), 3.95 TF (SP) 

• Chip is packaged as an accelerator ‘card’ 
- needs a host system to run.

• User code is comprised of many threads
- oversubscribe the SMXs

- have threads waiting for SMXs to run

- if a thread stalls e.g. to wait for data from 
memory, another bunch of threads is launched 
on its SMXs
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Intel Xeon Phi Architecture
• Another approach to better  FLOP/W is the Intel 

Xeon Phi architecture
- lots of ‘regular’ x86 cores on the chip

• Current Generation: Knight’s Corner (KNC)
- 60+ low power (Pentium-like) in-order cores on a 

chip, at low frequency (~1GHz)

- Each chip has L1 and L2 caches, and supports 4 
threads/core

- Each chip has a wide vector unit (see later)

• 2 x 16 SPs FLOP per cycle  per chip

• ~2 TFLOPS (SP), ~1 TFLOPS (DP) per  chip

- packaged as an ‘accelerator’ card 
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From Chips to Systems
Processing Element Node Rack System

On Chip Parallelism On Node Parallelism Nodes Connected w. Fabric

CPU Socket: 4-18 cores 
x 8(SP)/4(DP) way vectors

GPU: 2880 SP/960 DP  
CUDA cores

Xeon Phi: 60-61 cores 
x 16 (SP)/ 8(DP) way vector units

2-4 sockets,  
+ co-processors (e.g. 4 GPU/Xeon Phi)

Racks Connected w. Fabric
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From Chips to Systems
Processing Element 2 Node Blade System: Built from Cabinets of 96 nodes (48 blades)

On Chip Parallelism On Node Parallelism

18,688 Nodes Connected w. Fabric 
299,008 AMD CPU Cores 

18,688 GPUs (17.9M DP CUDA Cores)

CPU Socket:16 cores 
x 8(SP)/4(DP) way vectors

GPU: 2880 SP/960 DP  
CUDA cores

2x  (16 core CPU + GPU) 
Memory 

Connections for Interconnect
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New Technology Coming Soon
• NVIDIA Pascal GPUs
- Unified Memory (host & gpu)

- 3D Memory (high bandwidth)

- NVLink (high speed interconnect)

- Will Power Summit Supercomputer at Oak Ridge 
Leadership Computing Facility

• Intel Xeon Phi Knights’ Landing
- High Performance On Package Memory 

- 60+ Cores based on Intel Atom (Silvermont) with 
HPC enhancements

- Will power Cori Supercomputer at NERSC 
https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

http://www.anandtech.com/show/7900/nvidia-updates-gpu-roadmap-unveils-pascal-architecture-for-2016

Image courtesy of hpcwire.com

Image courtesy of Oak Ridge
National Laboratory

www.ornl.gov

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
http://www.anandtech.com/show/7900/nvidia-updates-gpu-roadmap-unveils-pascal-architecture-for-2016
http://hpcwire.com
http://www.ornl.gov


Thomas Jefferson National Accelerator Facility

On-core Vector parallelism
SIMD Vector Processing
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• Modern processors offer ‘Vector’ Parallelism

• Operate on several pieces of data (array) 
simultaneously

• Length of the vectors:
- AVX Instructions:  8 single precision, 4 double

- SSE Instructions:  4 single precision, 2 double

- Xeon Phi: 16 single precision, 8 double

- BlueGene/Q: 4 double precision

• GPUs offer “Warps of threads”
- e.g. 32 threads executing in lock-step

- very similar to Vector parallelism 
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Programming SIMD Vectors

Add/Multiply
MAdd

Masked 
Variants+ + + +

√ x √

+ + + +

√

Blends
Swizzles
Permutes

Broadcast

Shifts
&

Rotates +

Horizontal
Sum

Reduction

Gather/Scatter

Memory

Register

• Variety of vector operations

• Not standard on different hardware
- e.g. masking in hardware

• Some standards for ‘simple’ vectorization

• To get all the features of a particular 
system, one may need to turn to 
compiler intrinsics/assembly
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Vectorized AXPY 3 Ways
#define N_LARGE 128*1024*1024                                                                          
#define PREFDIST 128                                                                                   
                                                                                                       
__declspec(align(16)) float x[N_LARGE];                                                                
__declspec(align(16)) float y[N_LARGE];                                                                
__declspec(align(16)) float a;                                                                         

void axpy_Cilk()                                                                                       
{                                                                                                      
  y[:] = a*x[:]+y[:];                                                                                  
}                                                                                                      
                                            

void axpy_OpenMP4()                                                                                    
{                                                                                                      
#pragma omp parallel for simd                                                                          
  for(int i=0; i < N_LARGE;i++) {                                                                      
    y[i] = a*x[i]+y[i];                                                                                
  }                                                                                                    
}                                                                                        
                                            

void axpy_Intrinsic()                                                                                  
{                                                                                                      
  __m256 avec=_mm256_broadcast_ss(&a);                                                                 
                                                                                                       
  for(int i=0; i < N_LARGE; i+=8) {                                                                    
    _mm256_store_ps(y+i,                                                                               
      _mm256_add_ps(
        _mm256_mul_ps(avec,                                                  
                   _mm256_load_ps(x+i)),                                 
       _mm256_load_ps(y+i) ) );                                             
  }                                                                                                    
}                                                                                                    

Cilk Extended
Array Notation OpenMP 4

Intel Compiler 
Intrinsics
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On Node Thread Parallelism
• Concept: several streams of 

execution ocurring simultaneously

• Common example: fork-join model

• Software Implementation
- library / language/ compiler support

- e.g. OpenMP, Pthreads, TBB

• Thread / processor mapping 
- can map threads to separate cores

- or separate H/W threads in a core

- usually done by O/S, runtime or driver

y[0]=a*x[0] y[1]=a*x[1] y[2]=a*x[2] y[3]=a*x[3]

float y[4];
float x[4] = {0.0,0.1,0.2,0.3};
float a = 2.0;

#pragma omp parallel for
for(int i=0; i < 3; i++) { y[i]= a*x[i]; }

“Fork” (create) threads

“Join” threads
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Threading on a GPU
• Programmer defines Kernels (units of computing) 

to run on GPU

• Kernels are launched from the host CPU

• The kernels are defined over ‘blocks’ of threads 

• The ‘blocks’ for a kernel are collected into a ‘grid’ 
- blocks can have fast synchronization amongst their 

threads

- different blocks in a grid cannot synchronize amongst 
themselves — must be done via the host

- blocks are assigned to SMX-s

• Arrays for the blocks must be ‘copied’ to GPU
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AXPY on a GPU: Way 1
OpenACC 
void saxpy(int n, float a, float *x, float *y)

{

#pragma acc kernels

  for (int i = 0; i < n; ++i)

      y[i] = a*x[i] + y[i];

}

...

// Perform SAXPY on 1M elements

saxpy(1<<20, 2.0, x, y); Regular Function Call

Regular Function Definition

OpenACC #pragma marks code as 
code for GPU and causes compiler to 
generate code for the kernel and to 

copy data on and off the GPU

See: http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/

http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/
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AXPY on a GPU: Way 2
__global__

void saxpy(int n, float a, float *x, float *y)

{

  int i = blockIdx.x*blockDim.x + threadIdx.x;

  if (i < n) y[i] = a*x[i] + y[i];

}

…

int N = 1<<20;

cudaMemcpy(d_x, x, N, cudaMemcpyHostToDevice);

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements

saxpy<<<4096,256>>>(N, 2.0, x, y);

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

NVIDIA CUDA 

See: http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/

__global__ marks this as a CUDA kernel

blockIdx,  threadIdx are thread coordinates
blockDim are thread block sizes

CUDA defines these when the kernel is called

copy the data to the GPU from the host

Launch CUDA Kernel: 4096 blocks, 256 threads/block
copy the result from the GPU to the host

http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/
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Node Level Parallelism
• Often need to communicate 

between nodes
- point-to-point

• boundary exchange for 
nearest neighbours 

- global sums/inner products

• Krylov solvers

- all-to-all communiations

• In some cases, think of 
communication as a ‘remote 
memory access’ 

“Nearest Neighbour “Ghost 
Zone” (face) exchange 

Tree Reduction 
(e.g. sum) 
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Message Passing
• Exchange Data between a pair of 

proceses (e.g. on different nodes)

• A sends data and B receives data

• Synchronous
- Both A and B wait for the send to 

complete. 

- Analogy:  A phone call between A & B

A B

A B

A starts send B starts recv

A waits for send 
to finish

B waits for recv 
to finish

tim
e

handshake

handshake

Message
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Message Passing
• Exchange Data between a pair of 

proceses (e.g. on different nodes)

• A sends data and B receives data

• Asynchronous
- A sends and carries on with other work.

- B expresses an intent to receive and 
does other work

- Eventually B checks/is alerted that a 
message arrived

- Analogy:  (e)mail between A & B

- Advantage over synchronous: 
potentially less time spent waiting

A

B

A

B

A starts send B posts recv 
and carries on 

working

A carries on 
with work

B waits for recv 
to finish

tim
e

Message
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Message Passing with MPI
#include <mpi.h>
#include <iostream>
using namespace std;

int main(int argc, char *argv[])
{
  int rank;
  MPI_Init(&argc,&argv);
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);

  int message;
  if (rank==0) {
    message=5;
    std::cout << "Sending Message" << std::endl;
    MPI_Send((const void*)&message, 1, MPI_INT,1,0,MPI_COMM_WORLD);
  }

  if (rank==1) {
    message = 0;
    MPI_Status status;
    MPI_Recv((void *)&message,1,MPI_INT,0,0,MPI_COMM_WORLD, &status);
    std::cout << "Received Message="<< message << std::endl;
  }
  MPI_Finalize();
}

Setup: Initialize, get process number

Process 0: Send ‘5’ to process 1

Process 1: Recv Message from process 0
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Asynchronous Message with MPI
                                                                  
{                                                                                                      
  int rank, size;                                                                                      
  MPI_Init(&argc,&argv);                                                                               
  MPI_Comm_rank(MPI_COMM_WORLD, &rank);                                                                
                                                                                                       
  MPI_Request req; MPI_Status status;                                                                  
  int message;                                                                                         
  if (rank==1) {                                                                                       
    message = 0;                                                                                       
    MPI_Irecv((void *)&message,1,MPI_INT,0,0,MPI_COMM_WORLD, &req);                                                                                                            
  }                                                                                                    
                                                                                                       
  if (rank==0) {                                                                                       
    message=5;                                                                                         
    std::cout << "Sending Message" << std::endl;                                                       
    MPI_Isend((const void*)&message, 1, MPI_INT,1,0,MPI_COMM_WORLD,&req);                                                                                                          
  }                                                                                                    
                                                                                                       
  // —— BOTH PROCESSES CAN DO SOME USEFUL WORK HERE …

  MPI_Wait(&req,&status);                                                                              
  if( rank == 1) {                                                                                     
    std::cout << "Received: " << message << std::endl;                                                 
  }                                                                                                    
                                                                                                       
  MPI_Finalize();                                                                                      
}   

Setup: Initialize, get process number

Process 0: Post a send

Process 1: Post Intent to receive

Both Processes wait for their 
send

or receive to complete
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Amdahl’s Law

• Amdahl’s Law
- How much can parallel programming speed up 

a problem?

- Speedup = Optimized Run Time /  Original 
Unoptimized Runtime

- if you speed up (parallelize/optimize) portion P 
of your code, overall speedup limited by 1-P 
portion

- “what you don’t speed up will become your 
next bottleneck.”

50%

P 
60%

(1-P)40%

E
xe

cu
tio

n 
Ti

m
e

Original AcceleratedOriginal

Accelerate        by 6x

Sapp =
1

(1� P ) + P
S
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Summary for Part 1

• Discussed High Performance Computing and Computational Science

• Looked at aspects of parallel programming
- Hardware trends, and parallelism in hardware (multi-core, GPU, Xeon Phi)

- Building an HPC System

- vector level parallelism:  Intrinsics, OpenMP4 vectorization #pragmas, Cilk Array Notation

- thread level parallelism:  OpenMP, CUDA

- Internode parallelism:  Message Passing and MPI

• Next Lecture: Performance aspects



Thomas Jefferson National Accelerator Facility

Part 2
• Memory 

• Thinking about performance & bottlenecks 
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Memory
• Data for the computation needs to come 

from memory

• Memory speed has not been keeping up 
with CPU speed historically

• Manage this with a system of caches/
scratchpad memories:
- high bandwidth low latency memory, to store 

working set/temporary results

- for efficiency: organize computation to perform 
max. no of operations as possible on cached 
data (reuse)

• Next generation: On-Chip stacked memory
- dramatic improvements in Bandwidth expected.

L2 $

L1 $
32K, Read Latency: 1.2ns 
(~3 cycles). Read B/W: 
~16 GB/sec, Local to Core

256K. Read Latency: 3.5ns 
(~9-10cycles). Read B/W: 
~15.5 GB/sec. Local to 
Core 

L3 $
8M. Read Latency: 
6.5ns (~17 cycles). 
Read B/W: ~14.4 GB/
sec, Shared between 
cores 

DRAM
Large: e.g 6x2GB DDR3 
1600 MHz Dimms.  
Read Latency: 28 ns  
(~73 cycles), Read B/W: 
~10 GB/sec

Core 1 core of Xeon E5-2670, 2.6 
GHz, 20.8 GFlops peak/core

Latencies and bandwidths from: S. Saini, J.Chang, H. Jin, High Performance Computing 
Systems. Performance Modeling, Benchmarking and Simulation, Lecture Notes in Computer 

Science Volume 8551, 2014, pp 25-51
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Micro-architecture
• Modern CPUs are complex beasts

• They can do many things at once
- a floating point multiply

- a floating point add

- memory loads 

- memory stores

• Exactly what can be done is dictated by microarchitecture. 

• “Peak performance” assumes the microarchitcture is working optimally

• Microarchitectural “mishaps” can cause performance degradation
- pipeline stalls, branch misprediction

- imbalance in terms of floating point and addition operations etc.
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Thinking about on-Chip performance
• To solve a problem needs 
- some number of FLOPs (or IOPs)

- a certain amount of data to work on: Bytes

- Arithmetic Intensity of problem AI = FLOP/Bytes

• Hardware is capable of supplying
- some number of FLOP’/s per cycle

- some memory bandwidth Bytes’/s

- Balance point of machine B = FLOP’/Bytes’

• If  AI < B, problem is memory bound
- Optimize to maximize memory bandwidth attained

• If  AI >= B, problem is compute bound
- Optimize to maximize FP throughput

FLOP/Byte

FLOPS 
attained

Balance 
Point

Peak FLOPS
Pea

k M
em

ory
 Ban

dw
idt

h 

Compute  
Bound

Memory 
Bandwidth  

Bound

S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for 
Floating-Point Programs and Multicore Architectures", Communications of the ACM (CACM), 

April 2009, doi: 10.1145/1498765.1498785
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Example: Wilson Dslash Operator

• Key LQCD Kernel: Wilson Dslash Operator
- U matrices on links. 3x3 Unitary Matrices (complex)

- spinors on sites: 3x4 complex matrices

- 9 point stencil in 4-dimensions

• read 8 neighbours, 8 Us, multiply, write central value

- Naive Intensity: 0.92 flop/byte (SP), 0.46 flop/byte (DP)

t

t-1

t+1

y

z
t
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Reuse Potential of D-slash

• By streaming along a direction (e.g. T)

• reuse 7 of 8 neighbouring spinors

• due to even-odd coloring: no reuse of links
- unless multiple Dslash applications: temporal blocking

t

t-1

t+1

y

z
t

M. Smelyanskiy, K. Vaidyanathan, J. Choi, B. Joo, J. Chhugani, M. A. Clark, P. Dubey, “High-
Performance Lattice QCD for Multi-core Based Parallel Systems Using a Cache-Friendly Hybrid 
Threaded-MPI Approach”, SC’11
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Basic Performance Bound for Dslash
• R = # of reused input spinors

• r  = 0 for streaming store
   = 1 for ‘read-for-write’.

• Br = read bandwidth

• Bw = write bandwidth

• G = size of Gauge Link matrix (bytes)

• S = size of Spinor (bytes)

F =
1320

8G/Br + (8�R+ r)/Br + S/Bw

Reuse 
(R)

Streaming 
Store Compress SP  

FLOPS/B

0 No No 0.86

0 Yes No 0.92

0 Yes Yes 1.06

7 Yes No 1.72

7 Yes Yes 2.29
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Performance limits for Xeon Phi KNC
• Peak Mem Bandwidth 

is quoted as 320 GB/s

• In reality streams 
achieves around 
150-170 GB/sec

• “Unvectorized” peak 
assumes Vector Unit is 
used (but only 1 lane)

- ie. 2 FLOP/cycle

- same ‘unvectorized 
peak’ for DP as SP 
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Rooflines - SP
• Poor Bandwith Use 

Example: 
- E.g. if 43 GB/sec sustained

- Completely memory bound, 
vectorization won’t help

R=0 
No, SS 
AI=0.86

Poor B/W utilization: 
Max: ~37 GF (SP)
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Rooflines - SP
• If you could exhaust B/W:

- alignment

- L2 (&L1) prefetching

- large memory pages(?)

• Naive case (no reuse etc)

- Compute bound for 
unvectorized arithmetic

- Still bandwidth bound for 
vectorized arithmetic

- use further bandwidth 
saving tricks…

R=0
No, SS

AI=0.86 F/B

Max: 146.2 GF
Max Unvec: 126 GF
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Rooflines - SP
• Add Streaming Stores

R=0, 
SS

AI=0.92 F/B

Max: 156.4 GF
Max Unvec: 126 GF
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Rooflines - SP
• Add Streaming Stores

• Add Cache reuse

• Add 2-row compression

• B/W bound, free FLOPS

• Max ~ 3x Max Unvec.

- vectorization is desirable
R=7
SS

AI=2.29 F/B

Max: 389 GF
Max Unvec: 126 GF
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Enemies of performance
• Idleness, Dependency, Inefficiency and Overheads
- Lowest performance is when the chip is idle

• using only a single core from a multi-core node (rest are idle)

• microarchitectural issues (pipeline stalls, etc)

• waiting for message to arrive from other node, data to arrive from memory

• waiting for a hardware resource (register, or FP Unit) to become available

• waiting for other threads to reach a certain point in a calculation (barrier)

- Inefficient use of a resource

• e.g. not maximizing memory bandwidth, by reading unaligned data or by 
not achieving ‘coalesced’ reads (on a GPU).

- Some operations just take a “long” time, overhead on useful computation

• e.g. Create and Join threads, thread barriers, synchronization
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Communicating Between Nodes
• Often need to communicate 

between nodes
- point-to-point

• boundary exchange for 
nearest neighbours 

- global sums/inner products

• Krylov solvers

- all-to-all communiations

• In some cases, think of 
communication as a ‘remote 
memory access’ 

“Nearest Neighbour “Ghost 
Zone” (face) exchange 

Tree Reduction 
(e.g. sum) 
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Message passing constraints
• Sending message has a 

start-up time (latency) and a 
flow-rate (bandwidth)

• Similar in some sense to 
DRAM

• Message can be latency or 
bandwidth bound given its 
size.

• Can use asynchronous 
message passing to hide 
communication (overlap 
compute with comms)

 0
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Message size, bytes

Netpipe Tests - PCI-X HCA, E7500 Chipset

rdma_write
NCSA MPI

OSU MPI
IPoIB

Latency Bound

Bandwidth bound

1/2 Max Bandwidth

Performance of MPI over infiniband: http://lqcd.fnal.gov/benchmarks/newib/index.html

http://lqcd.fnal.gov/benchmarks/newib/index.html
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Mitigating Bottlenecks
• Some bottlenecks can be mitigated

• Overlap Communication with Computation
- use asynchronous communication

- process interior while boundary data is in flight

- breaks down if interior is too small

• Hide latency with parallelism
- If a thread is waiting on latency, switch to working 

on another — GPUs do this in hardware

• Reduce overheads if possible
- e.g. if thread fork/join is expensive collapse 

multiple #pragma omp parallel regions into one 
(may need to use other synchronization)

 Start Communication  

 Process Interior 

 Finish Communication and Process boundary
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Art of Developing For High Perf.
• As you can see Developing for Performance can be a complex endeavor

• Many, hierarchical levels of concurrency to exploit:
- On Chip:   Vectors (Intrinsics, language extensions) & Threads (OpenMP, pthreads, TBB)

- Inter-node: Message passing (MPI), Remote Memory Access (PGAS)

• Complex Memory Hiearachy
- Caches, Scratch-pads, DRAM etc

• Bottlenecks, inefficiencies, overheads
- Speeds & Feeds: Interconnect/System Bus/Memory/Instruction Latencies & Bandwidths

- Hardware Parallelism vs. Problem Parallelism mismatches

• Didn’t even discuss I/O, file transfer and other day-to-day minutiae

• Good news:  You have help to stay productive 
- Frameworks, Optimized Libraries, Tools, People
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Case Study: Lattice QCD for NP

Hägler, Musch, Negele, Schäfer, EPL 88 
61001

• What kind of matter can QCD make? 

• How does QCD make protons, neutrons? 
– what are the distribution of quarks, gluons, etc in a proton or 

neutron ? 

• QCD must predict properties of light nuclei 
– how to make helium, tritium etc 

• How does QCD behave under extreme temperatures & pressures 
such as in exploding starts or shortly after the Big-Bang.
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Methodology
• Lattice QCD - a formulation of QCD amenable to 

non-perturbative calculation
- quarks  live on lattice sites

- gluons move to lattice links

• move from su(3) Lie Algebra to SU(3) Lie Group

• parallel transporters

- Euclidean time

- Path integrals become products of integrals

- Lattice Actions

• e.g. Wilson Gauge action  O(a2) discretization error

• Fermion Formulation: O(a) or O(a2) discretization 
typically
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LQCD Calculation Workflow

• Gauge Generation: Capability Computing on Leadership Facilities
- configurations generated in sequence using Markov Chain Monte Carlo technique

- focus the power of leadership computing onto single task exploiting data parallelism

• Analysis: Capacity computing, cost effective on Clusters
- task parallelize over gauge configurations in addition to data parallelism

- can use clusters, but also Leadership Facilities in throughput (ensemble) mode.

Gauge Generation
(Monte-Carlo)

Analysis Phase 1
(Propagators)

Analysis Phase 2
(Stats/Fits)

Physics 
Result

Gauge Configurations Propagators, Correlation Functions
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Hybrid Monte Carlo (HMC)
1. Refresh momenta from Gaussian Heatbath 

- generate (U,p) from (U,pold) 

2. Compute H = H(U,p) 

3. Perform Molecular Dynamics (MD) trajectory 

- generate (U’,p’) 

- MD must be reversible and ‘area preserving’ 

4. Compute H’ = H(U’,p’) 

5. Accept with Metropolis probability 

6. If rejected new state is (U,p)

Hypersurface of Constant H

Momentum refreshment 

MD

(U, pold)

(U, p)

(U �, p�)

(U,p) Phase Space

• O(10000) trajectories per ensemble

• 60-80% of work in Linear Solvers  (Quark MD Forces)
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Method for Computing Corr. Fn-s
• Distilllation: Two main components
- propagator calculations (solver)

- contraction calculations 

• Contractions use dense matrix mutliply
- matrix dimension is O(100) (# sources)

• Many solves needed on single 
configuration: 
- #spin x #timeslice x #source x #quarks

• Typical Example
- 4 spins, 256 timeslices, 386 source vectors 

and light + strange quarks

- 790,528 individual solves per configuration

Specify Diagrams

Solver

Generate All 
Propagators

Contractions

Contract 
Propagators

Solution  vectors (large) 
Generalized Propagators  (small) 

I/O can be significant

Correlation Functions
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Solvers
• Traditionally we solve the Linear Systems with 

iterative Krylov Subspace solvers

• These can 
- work as black boxes

- typically need only L1 BLAS and MV operations

- typical candidates: Conjugate Gradients, BiCGStab

• Convergence depends on condition number of M

• As quark mass approaches the physical mass, M 
becomes more and more ill conditioned 

• Critical Slowing Down in the Solver.
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Algebraic Multi Grid
• Critical Slowing down is caused by ‘near zero’ 

modes of M

• Multi-Grid method
- separate (project) low lying and high lying modes

- solve for high lying modes with “smoother”

- solve for low modes on coarse grid with reduced 
dimensional operator 

- Gauge field is ‘stochastic’, so no geometric smoothess 
on low modes => algebraic multigrid

- Setting up restriction/prolongation operators is costly

- Easily amortized in Analysis with O(100,000) solves  10
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-0.088 -0.086 -0.084 -0.082 -0.08 -0.078 -0.076 -0.074

se
co

nd
s 

pe
r s

ol
ve

mass

double precision CGNR
mixed precision CGNR

double precision BiCGStab
mixed precision BiCGStab

mixed precision multigrid

10-12x speed up

Multi-Grid. figure from J. C. Osborn et. al.  PoS Lattice 2010:037,2010, R. Babich et. al. 
Phys. Rev. Lett, 105:201602,2010 

Image From: http://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html 
Credit: LLNL, CASC 

http://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html
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Scaling Bottleneck Example:
• One of the original findings  was 

that strong scaling was difficult 
with accelerators

• Inter-device communications 
was considered to be the main 
bottleneck

• Mismatch of bandwidths
- 8+8 GiB on PCIe Gen2

- ~150-170 GB/sec on device

• Spurred the development of 
Domain decomposed solvers…

SP=Single Precision (32bit)
HP=Half Precision (16bit)

R.Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, S. Gottlieb. “Scaling Lattice QCD Beyond 100 GPUs” 
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11) 

page 70:1-70:11, New York, NY, USA, ACM (2011)
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Architecture Awareness
• Attempt to deal with communications bottleneck:
- don’t communiate at all

• Use a block-diagonal operator as a 
‘preconditioner’ in the solver
- inner-outer scheme

• Arrange to spend most time in the preconditioner.

• But be aware: 
- block diagonal operator is a ‘wavelength filter’

- outer scheme still needs to deal with long wavelength 
modes

• Example of interplay of architecture, algorithm, 
applied maths and physics.
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Solver Performance

• QUDA Solver performance on Titan
- Cray XK7 system

- 1 NVIDIA K20X GPU per node

- Gemini Interconnect

• The DD+GCR solver does 
considerably better than the 
standard BiCGStab

• But even DD+GCR is affected by 
strong scaling effects
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BiCGStab: 723x256
DD+GCR: 723x256
BiCGStab: 963x256
DD+GCR: 963x256

Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

B. Joo,  F. Winter (JLab), M. Clark (NVIDIA)
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Non-Solver Performance
• Amdahl’s Law
- if you speed up (parallelize/

optimize) portion P of your 
code, overall speedup 
limited by 1-P portion

- “what you don’t speed up 
will become your next 
bottleneck.”

- E.g. HMC on GPUs: after 
solver is optimized, non-
solver part becomes the 
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Part 2: Summary
• In Part 1 we were thinking about the forms of parallelism and how to program them
- threads, vectors, processes, etc.

• In Part 2 we thought more about performance and what it means
- how to think about performance — roofline models, case study with Wilson Dslash

- what are the obvious enemies of performance — and how to attempt to mitigate them

- finally we took a case study of  a lattice QCD campaing

• Stages of the computation

• The key algorithms 

• Architectural factors such as GPUs

• How software and algorithms can surmount some of these challenges.
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Overall Summary
• High Performance Computing is a ‘3rd pillar ’ of Science
- Attempts to fill the gap between experiment/observation and theory

• High Performance Computers are multi-faceted complex systems
- performance these days is delivered through parallelism/concurrency

- power is the key limiter: Efficiency was: FLOPS/$,  now it is FLOPS/W x W/$.

• Interplay between Architecture, Algorithm Choice, and Performance Optimization
- natural for HPC projects to be multi-disciplinary (e.g. SciDAC)

• High Performance doesn’t have to be ‘Big Iron’ - tho some of us like that :)

• Performance is always relative. If you choose your algorithms, libraries, and 
develop your code, to best exploit your hardware, you’re doing HPC


