Introduction to High Performance
Computing

Balint Joo
Jefferson Lab, Newport News, VA, USA

HUGS’15
June, 12, 2015

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Part 1

e Computational Science in General

e Parallel Computing
- Computing
- Hardware Trends
- Multi-Core Chips and GPUs
- Very brief introduction to parallel programming

..!effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science & Engineering

e The “3rd Pillar of Science and Engineering” SC/ENCE & ENG/NEERING

Computation Experiment

J)effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment

QAN panly

J)effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment
- Virtual experiment where

- Made of Codep: %6l

- real controlled experiments are not possible

.!effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment
- Virtual experiment where
- real controlled experiments are not possible
- Or may be perhaps hazardous

j JlLllim-u_

=

J)effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment
- Virtual experiment where
- real controlled experiments are not possible
- Or may be perhaps hazardous
- real experiment can be expensive
- engineering and design applications

.!effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment
- Virtual experiment where
- real controlled experiments are not possible

- Or may be perhaps hazardous
- real experiment can be expensive
® engineering and design applications
e (Can be Data Driven
- E.g. Planck Satellite Analysis, CERN data analysis

..!effe?son Lab Thomas Jefferson National Accelerator Facility

HPC In Science

e The “3rd Pillar of Science and Engineering”
- Connect Theory to Experiment
- Virtual experiment where
- real controlled experiments are not possible
- Or may be perhaps hazardous
- real experiment can be expensive
® engineering and design applications
e (Can be Data Driven
- E.g. Planck Satellite Analysis, CERN data analysis
¢ QOr Driven by Computation
- Evolve Simulations of Physical Systems

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Science Question

i '1) 3 (Y —
?3:’ i\ s

QCD Lagrangian

I w1 A -~
ET —-ll‘, I';u' +' >_.

q [iv" (9, — igA,) — m,) q
7 uds.cht

o

A A

-

© quark A gluon

Pose computational question

J)effe?son Lab

- -
wa . e
.- ” W0 L —
why, N - .
o — -
o o 3 —
»l'-“ —— bot
R —
 T— pi B \
Al

HPC Cycle

TN gy

Answer

P = min (l, e_H(U,’p’)JFH(U’p))

.

. Compute rg = x — M Moo, po = 10

. For 7 =0,1,... until convergence:

— (rj,7;)
’ (Mpj, Mpj)

. Pjr1 = P + P
. Tj_|_1 — 7"]' —O:j (MTM)pj

B = (Tj+1,Tj+1)

! (15,75)

. Pj+1 = Tjr1 + Bjpj
. End For

Develop/Collect Computational Algorithms

Thomas Jefferson National Accelerator Facility

“Production™
perform
computation

e O 0 [¢} plag_gaugeact.cc

> @) m PlagGaugeAct::init(const Real& coeff_s, const Real& coeff_t, const AnisoParam_t&

PlagGaugeAct: :staple(LatticeColorMatrix& u_mu_staple,
Handle< GaugeState<P,Q> >& state,
F cb)
START_CODE() ;

multild<LatticeColorMatrix>& u = state->getLinks();

mu_staple = zero;
iceColorMatrix tmpl, tmp2;
iceColorMatrix u_nu_mu;

at
at trix u_nu_mu;

nu=0; nu < Nd; ++nu)
u_nu_mu = shift(ulnul, FORWARD,mu);
tmpl[rblcbl] = u_nu_mu * adj(shift(ul[mu], FORWARD,nu));

tmp2[rblcbl] = tmpl * adj(ulnul);

u_mu_staplelrblcb]] += param.coeffs[mul [nu] * tmp2;

tmpllrblcbl] = adj(shift(u_nu_mu, BACKWARD,nu)) * adj(shift(u[mu],BACKWARD, nu
));

tmp2[rblcb]l] = tmpl * shift(ulnul,BACKWARD,nu);

u_mu_staplelrblcb]] += param.coeffs[mu] [nul * tmp2;

END_CODE() ;

Software
Implementation

aniso)

HPC Cycle

Science Question

i “Production”:
o [—=
‘ perform
' computation

12.0.6

QCD Lagrangian

!
L=— F"Fu+ ¥
. :

ud.s.ch

Socurny sae v
J’l["‘l (0 —igA,) ’"'l] q o =x — MTMdepo, po =10

N S Ly
- ¥ o s

'''''''''

,,,,,,

til convergence:

Applied Maths

wvdre
Implementation

.....

111
,,,,,,,,,,
/////////

/////
IIIIIII
4,[’),,'/,/,‘.
/////////

[’

O quark A gluon

P = min (1, e H

Pose computational question Develop/Collect Computational Algorithms

.geffgon Lab Thomas Jefferson National Accelerator Facility

Parallel Computing

e These days, high performance computing is parallel computing
- “Several tasks are accomplished concurrently”

e This is partially hardware driven (see later)

e However, many tasks are naturally parallel

- “Embarassingly Parallel”: a collection of independent tasks
e ¢.g.event analysis, ray tracing, LQCD contractions
e parallelism brings throughput

- Highly Coupled: tasks that interact and need coordination
e e.g. Finite Difference Stencils, Molecular Dynamics
e parallelism increases speed of single problem

- Mixtures of the two: e.g. LQCD propagator calculation

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Computer Basics

e Read-Execute-Write
- read data from Memory into the Processor
- processor executes Computation
- result is written back to Memory

e Processor contains
- Compute components (e.g. Add/Multiply Floating Point units)
- Registers
e Floating point unit reads input and writes output to registers
- Caches

e Hold data read from memory, in case it is needed again
soon

.geffgon Lab Thomas Jefferson National Accelerator Facility

Processor Performance Trends

e [he number of transistors is still

doubling every 18 months or so 10° |
10° ;
- Moore’s law
. 10°
e But both clock speeds and single 4
thread performance are flattening 0
3
- have flattened adt
: . 10° 4 |
e Power consumption needs to remain Sl
flat 10 Cores
0
- only so much power from the wall-plugs odl IR =
e Really the only way to get higher 1975 1980 1985 1990 1995 2000 2005 2010 2015
performance iS th rough a greater gc:’fc"o"f;;Ctim::‘dc’:;c‘bf”C"t:c'io?c‘.' Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten

number of cores and parallelism

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Multi-Core Chips

e Power use grows with clock frequency
- cannot make clocks faster

e But transistor density is still growing
- can add more cores

e Multi-core chips

- replicate cores on silicon
- often add extra ‘shared’ cache and on Caches

chip interconnect
e Current generations

- Uup to 18 cores per chip (Socket)
- Uup to 4 sockets per server

.geft/eZon Lab Thomas Jefferson National Accelerator Facility

GPUs

e |f one wants

- high floating point throughput
- at low power (High FLOP/Watt)

4 3+ 3 3 3 £ 4 3 S

Instruction Cache
Warp Scheduler Warp Scheduler

e Use the silicon area for more floating point units T T
ro Core Core Core Lost SFU Core Core (Core -m Core Core
- reduce/eliminate chip real estate regular cores reserve e — N —

Core Core Core

|] [| Core Core Core Core C Core LOIST U Core Core Core Core Core Cores

fo r Iatel le I lld I I lg Core Core Core Core C Core LDiST SFU Core Core Core -Corc Core Core

Core Core Co C C C LoisT SFU Core Core Core - Core Core Cors

u u C Core Care C C C Lo/sT SFU Core Core Core - Core Core Core

I I I l C Core C Core C Core rorst SFU Core Core Core Core Core Core

Core Core Core Core C Core Loist SFU Core Core Core - Core Core Core

[] [] [] []
C Core Core ¢ Core Core LoisT SFU Core Core Core - Core Core Core
— | e a e| |C|eS rOU |||aSS|Ve ara e |S|||
(of] Core Care Core Core Core LOIST - Core Core Core
Ci Core Core C LDIS re

e NVIDIA Kepler architecture ”

- SMX multiprocessing engine: 192 single precision
cores, 64 double precision cores

ST U Core Core Co

,:_ ‘, E = = [= = = =
& 5 5 = S S © > 5 &
|- 7 @] o] » 7]

..!effe?son Lab Thomas Jefferson National Accelerator Facility

GPUs

e A GPU Chip is made of 15+ SMXs
- K20X Peak perf: 1.31 TF (DP), 3.95 TF (SP)

e Chip is packaged as an accelerator ‘card’
- Nneeds a host system to run.

e User code is comprised of many threads
- oversubscribe the SMXs
- have threads waiting for SMXs to run

- If a thread stalls e.g. to wait for data from
memory, another bunch of threads is launched
on its SMXs

J)effe?son Lab Thomas Jefferson National Accelerator Facility

Intel Xeon Phi Architecture

e Another approach to better FLOP/W is the Intel
Xeon Phi architecture

- lots of ‘regular’ x86 cores on the chip

e Current Generation: Knight’s Corner (KNC)

- 60+ low power (Pentium-like) in-order cores on a
chip, at low frequency (~1GHz)

- Each chip has L1 and L2 caches, and supports 4
threads/core

- Each chip has a wide vector unit (see later)
e 2x 16 SPs FLOP per cycle per chip
o ~2TFLOPS (SP), ~1 TFLOPS (DP) per chip

- packaged as an ‘accelerator’ card

J)effe?son Lab Thomas Jefferson National Accelerator Facility

From Chips to Systems

Processing Element Node Rack System

et B]

2-4 sockets,
+ co-processors (e.qg. 4 GPU/Xeon Phi)

SR = i s AT M P g — A
e e e e
= S AR -

aaaaaaaaa

Xeon Phi: 60-61 cores
x 16 (SP)/ 8(DP) way vector units

On Chip Parallelism On Node Parallelism Nodes Connected w. Fabric Racks Connected w. Fabric

J)effe?son Lab Thomas Jefferson National Accelerator Facility

From Chips to Systems

Processing Element 2 Node Blade System: Built from Cabinets of 96 nodes (48 blades)

2x (16 core CPU + GPU)
Memory
Connections for Interconnect

CPU Socket:16 cores
x 8(SP)/4(DP) way vectors

GPU: 2880 SP/960 DP

CUDA cores 18,688 Nodes Connected w. Fabric

299,008 AMD CPU Cores
On Chip Parallelism On Node Parallelism 18,688 GPUs (17.9M DP CUDA Cores)

.{effe?son Lab Thomas Jefferson National Accelerator Facility

New Technology Coming Soon

http://www.anandtech.com/show/7900/nvidia-updates-gpu-roadmap-unveils-pascal-architecture-for-201 6

e NVIDIA Pascal GPUs

- Unified Memory (host & gpu)
- 3D Memory (high bandwidth)
- NVLink (high speed interconnect)

: : : I t f Oak Rid
- Will Power Summit Supercomputer at Oak Ridge mag;;gggafsgagcraj;w' ge

Leadership Computing Facility www.ornl.gov

e |ntel Xeon Phi Knights’ Landing

Image courtesy of hpcwire.com

- High Performance On Package Memory

- 60+ Cores based on Intel Atom (Silvermont) with
HPC enhancements

- Will power Cori Supercomputer at NERSC

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing

..!effe?son Lab Thomas Jefferson National Accelerator Facility

https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-knights-landing
http://www.anandtech.com/show/7900/nvidia-updates-gpu-roadmap-unveils-pascal-architecture-for-2016
http://hpcwire.com
http://www.ornl.gov

On-core Vector parallelism

e Modern processors offer ‘Vector’ Parallelism
SIMD Vector Processing

e Operate on several pieces of data (array)
simultaneously

e | ength of the vectors: vro = . 2

vr | vr3

- AVX Instructions: 8 single precision, 4 double NN NN

- SSE Instructions: 4 single precision, 2 double P e e b oo

- Xeon Phi: 16 single precision, 8 double \

- BlueGene/Q: 4 double precision ord : ‘L\- T mE ws

vrO[0] vrO[2] 2101 Vvr2[2]

e GPUs offer “Warps of threads” S Y 7 R v
_ _ VrO[1] - vrO[_3] vr2[1] vr2[3]
- e.g. 32 threads executing in lock-step vl i3l s3] +wr3[3)

- very similar to Vector parallelism

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Programming SIMD Vectors

Memory
I I I I I |
Add/Multiply W Masked ININIg:
\ \ / Ather/Scatter MAdd CI)GP GID CID Variants CI)(? GP CI)
Register 1 l -%
Blgnds
Swizzles S
e Variety of vector operations Permutes -
: Broadcast
e Not standard on different hardware >< % /

- e.g. masking in hardware

e Some standards for ‘simple’ vectorization

| Sh ft i
* To get all the features of a particular - \\\ Hogi?:tal \8/

SyStem, one may need to turn to Rotates Reduction
compiler intrinsics/assembly

..!effegon Lab Thomas Jefferson National Accelerator Facility

Vectorized AXPY 3 Ways

#define N LARGE 128*1024*1024

fdefine PREFDIST 128 Intel Compiler
__declspec(align(16)) float x[N LARGE]; Intr|nS|CS
__declspec(align(16)) float y[N LARGE];
__declspec(align(16)) float a; l
void axpy Cilk() void axpy OpenMP4 () void axpy Intrinsic()
{ { {
v[:] = a*x[:]+y[:]; #pragma omp parallel for simd ___m256 avec= mm256 broadcast ss(&a);
} for(int i=0; i < N LARGE;i++) {
vy[i] = a*x[i]+y[i]; for(int 1=0; i < N LARGE; 1+=8) {
} ~mm256 store ps(y+i,
} ~mm256_add_ps (
T ~mm256 mul ps(avec,
~mm256 load ps(x+i)),
. _mm256_ load ps(y+i)));
Cilk Extended }
OpenMP 4 \

Array Notation

.!effe?son Lab Thomas Jefferson National Accelerator Facility

On Node Thread Parallelism

float y[4];
e Concept: several streams of float x[4] = {0.0,0.1,0.2,0.3};

: . . float a = 2.0;
execution ocurring simultaneously
#pragma omp parallel for

e Common example: fork-join model for(int i=0; i < 3; i++) { y[i]= a*x[i]; }

e Software Implementation

- library / language/ compiler support l Fork’ (create) threads
- e.g. OpenMP, Pthreads, TBB

e Thread / processor mapping I I I 1

- can map threads to separate cores y[0]=a™x[0] y[1]=a™x[1] y[2]=a*x[2] y[3]=a"x[3]

- or separate H/W threads in a core

- usually done by O/S, runtime or driver
“Join” threads

..!effelgon Lab Thomas Jefferson National Accelerator Facility

Threading on a GPU

e Programmer defines Kernels (units of computing) Host Device
to run on GPU Grid
K‘:"" Block Block Block
e Kernels are launched from the host CPU 0.0 | 0.0 | @0
_ ‘ , Block”” Block '-, Block
* The kernels are defined over ‘blocks’ of threads M WU W
e The ‘blocks’ for a kernel are collected into a ‘grid’ SoeeE
Kemel .~ !
- blocks can have fast synchronization amongst their _ 4B i
threads '/Block(1,1) !

- different blocks in a grid cannot synchronize amongst
themselves — must be done via the host

- blocks are assigned to SMX-s
e Arrays for the blocks must be ‘copied’ to GPU

..!effe?son Lab Thomas Jefferson National Accelerator Facility

AXPY on a GPU: Way 1

OpenACC

void saxpy(int n, float a, float *x, float *y)
{

tpragma acc kernels

Regular Function Definition

OpenACC #pragma marks code as
code for GPU and causes compiler to
generate code for the kernel and to
copy data on and off the GPU

for (int 1 = 0; i < n; ++1i)

yl[i] = a*x[1] + y[1];

// Perform SAXPY on 1M elements

saxpy (1<<20, 2.0, x, y);

Regular Function Call

See: http:/devblogs.nvidia.com/parallelforall/six-ways-saxpy/

.!effe?son Lab Thomas Jefferson National Accelerator Facility

http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/

AXPY on a GPU: Way 2

NVIDIA CUDA
__global__ «—— __global__ marks this as a CUDA kernel

void saxpy(int n, float a, float *x, float *y)

{
int i = blockIdx.x*blockDim.x + threadIdx.x: blockldx, threadldx are thread coordinates

if (i < n) y[i] = a*x[i] + y[i]; blockDim are thread block sizes
} CUDA defines these when the kernel is called

int N = 1<<20;
cudaMemcpy(d _x, x, N, cudaMemcpyHostToDevice); 7‘ COpy the data tO the GPU from the hOSt

cudaMemcpy(d_y, y, N, cudaMemcpyHostToDevice);

// Perform SAXPY on 1M elements / Launch CUDA Kernel: 4096 blocks, 256 threads/block
SAXpYSSSEDE, 207y 20y % 1) . copy the result from the GPU to the host

cudaMemcpy(y, d_y, N, cudaMemcpyDeviceToHost);

See: http:/devblogs.nvidia.com/parallelforall/six-ways-saxpy/

.!effe?son Lab Thomas Jefferson National Accelerator Facility

http://devblogs.nvidia.com/parallelforall/six-ways-saxpy/

Node Level Parallelism
|

e (Often need to communicate 1
between nodes . -)

- point-to-point ”

* boundary exchange for
nearest neighbours

- global sums/inner products

e Krylov solvers _ - _

- all-to-all communiations ”

® |n some cases, think of
communication as a ‘remote Tree Reduction
memory access’ | (.. sum)

L |

“Nearest Neighbour “Ghost
Zone” (face) exchange

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Message Passing

e Exchange Data between a pair of A starts send B starts recv

proceses (e.g. on different nodes)
e A sends data and B receives data n JNandshake n
e Synchronous I

. GSS
- Both A and B wait for the send to Qe
complete.

time

- Analogy: A phone call between A & B
n handshake
e
A walts for send B waits for recv
to f|n|Sh to f|n|Sh

Jeffe?son Lab Thomas Jefferson National Accelerator Facility

Message Passing

e Exchange Data between a pair of
proceses (e.g. on different nodes)

e A sends data and B receives data n
e Asynchronous “
- A sends and carries on with other work. %A
- B expresses an intent to receive and
does other work

- Eventually B checks/is alerted that a A carries on
message arrived with work

A starts send
B posts recv

and carries on
working

time

- Analogy: (e)mail between A & B B waits for recv

- Advantage over synchronous: to finish

potentially less time spent waiting

Jeffe?son Lab Thomas Jefferson National Accelerator Facility

Message Passing with MPI

#include <mpi.h>
using namespace std; Setup: Initialize, get process number

int main(int argc, char *argv[])
{

int rank;

MPI Init (&argc,&argv);

MPI_Comm_rank (MPI_COMM WORLD, &rank); PrOceSS O Send ‘5, O prOceSS 1

int message;
if (rank==0) {
message=5;
std: :cout << "Sending Message"' << std::endl;
MPI Send((const void*)&message, 1, MPI INT,1,0,MPI COMM WORLD) ;

}

ifmgzzgji)of 4 Process 1: Recv MeSS&ge from Process 0

MPI Status status;
MPI Recv((void *)&message,l,MPI INT,0,0,MPI COMM WORLD, &status);
std::cout << "Received Message="<< message << std::endl;

}
MPI Finalize();

}

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Asynchronous Message with MPI

int rank, size; Setup: Initialize, get process number

MPI Init (&argc, &argv);
MPI_ Comm_ rank(MPI_COMM WORLD, &rank);

MPI_Request req; MPI_Status status: Process 1: Post Intent to recelive
int message;
if (rank=gl) { /

message = 0;

MPI Irecv((void *)&message,l,MPI INT,0,0,MPI COMM WORLD, &req);

} Process 0: Post a send

if (rank==0) {
message=5;
std::cout << "Sending Message" << std::endl;

MPI Isend((const void*)&message, 1, MPI INT,1,0,MPI COMM WORLD, &req) ;
}

// — BOTH PROCESSES CAN DO SOME USEFUL WORK HERE ..

e vatearequstarnn; ,———————— BOth Processes wait for their

if(rank == 1) { Cj
std::cout << "Received: " << message << std::endl; 5563r1

} or receive to complete

MPI Finalize();

}

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Sapp T (1 P) —|—
Accelerate by
A
(1-P)40%
50% |
o
£
|_
S P
*g 60%
o
x
LL
Original Accelerated

.!effe?son Lab

Amdahl’s Law

e Amdahl’s Law
- How much can parallel programming speed up

10

a problem?

Speedup = Optimized Run Time / Original
Unoptimized Runtime £

if you speed up (parallelize/optimize) portion P |

of your code, overall speedup limited by 1-P
portion

“what you don’t speed up will become your 0
next bottleneck.”

Thomas Jefferson National Accelerator Facility

Approx |
- GPU/CPU |
Mem B/W |

i Approx
P

) S 10 12
S

| GPU/CPU
. * FLOPS
Ratio (8.4x)
PN T B B s S B P O
> 4 ¢ 14 16 18 20

Summary for Part 1

e Discussed High Performance Computing and Computational Science

® | ooked at aspects of parallel programming
- Hardware trends, and parallelism in hardware (multi-core, GPU, Xeon Phi)
- Building an HPC System
- vector level parallelism: Intrinsics, OpenMP4 vectorization #pragmas, Cilk Array Notation
- thread level parallelism: OpenMP, CUDA
- Internode parallelism: Message Passing and MPI

e Next Lecture: Performance aspects

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Part 2

e Memory
e Thinking about performance & bottlenecks

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Memory

1 core of Xeon E5-2670, 2.6
GHz, 20.8 GFlops peak/core

32K, Read Latency: 1.2ns
(~3 cycles). Read B/W:
~16 GB/sec, Local to Core

256K. Read Latency: 3.5ns
(~9-10cycles). Read B/W:

~15.5 GB/sec. Local to

8M. Read Latency:
6.5ns (~17 cycles).
Read B/W: ~14 .4 GB/

sec, Shared between
cores

Large: e.g 6x2GB DDR3
1600 MHz Dimms.
Read Latency: 28 ns

(~73 cycles), Read B/W:
~10 GB/sec

e e | @ Data for the computation needs to come I
from memory
gz | 0
\\ ,/‘\ ° I\/I.emory speed hag noft been keeping up -
.\ o/ with CPU speed historically
| :
' \\ ‘\\\ e Manage this with a system of caches/ i
7/ scratchpad memories: -2
- high bandwidth low latency memory, to store I core
tiny bandwidth == HUGE BOTTLENECK WOrking Set/tempOrary reSUItS
S _ - for efficiency: organize computation to perform L3 $
100 cPU speed — max. no of operations as possible on cached
s | 5 data (reuse) I
e Next generation: On-Chip stacked memory S
_ { = dramatic improvements in Bandwidth expected.
a. 1 ' WA ' ' L Latencies and bandwidths from: S. Saini, J.Chang, H. Jin, High Performance Computing
LTS R s a0 BEs EUlA Systems. Performance Modeling, Benchmarking and Simulation, Lecture Notes in Computer

Science Volume 8551, 2014, pp 25-51

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Micro-architecture

e Modern CPUs are complex beasts

e They can do many things at once
- a floating point multiply
- a floating point add
- memory loads
- memory stores

e Exactly what can be done is dictated by microarchitecture.
o “Peak performance” assumes the microarchitcture is working optimally

e Microarchitectural “mishaps” can cause performance degradation
- pipeline stalls, branch misprediction
- Imbalance in terms of floating point and addition operations etc.

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Thinking about on-Chip performance

e o solve a problem needs

&
- some number of FLOPs (or IOPs) FLOPS Q{éﬁ"
- a certain amount of data to work on: Bytes attained é@/"
- Arithmetic Intensity of problem Al = FLOP/Bytes Q@Q@
e Hardware is capable of supplying Peak FLOPS
- some number of FLOP’/s per cycle
- some memory bandwidth Bytes’/s —
- Balance point of machine B = FLOP’/Bytes’ “Memory. Bound
e |f Al <B, problem is memory bound Bandwidth :

Bound
- Optimize to maximize memory bandwidth attained

Balance

e |[f Al >=B, problem is compute bound Point FLOP/Byte

S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual Performance Model for

— Optl mlze tO maX| mlze FP th rOug hpUt Floating-Point Programs and Multicore Architectures", Communications of the ACM (CACM),

April 2009, doi: 10.1145/1498765.1498785

.!effelgon Lab Thomas Jefferson National Accelerator Facility

Example: Wilson Dslash Operator

t+1

Dy = Z _(1 =)V, 041y + (1 %)U;;[—ﬂ,u(sw—ﬂ,y_
U

e Key LQCD Kernel: Wilson Dslash Operator g

t-1

- U matrices on links. 3x3 Unitary Matrices (complex)

- Spinors on sites: 3x4 complex matrices \

- 9 point stencil in 4-dimensions
e read 8 neighbours, 8 Us, multiply, write central value
- Naive Intensity: 0.92 flop/byte (SP), 0.46 flop/byte (DP) Z

.!effelgon Lab Thomas Jefferson National Accelerator Facility

Reuse Potential of D-slash

— Z (]. — WN)U 63;-|-ﬂ7y _|_ (1 _|_ W/M)U;—ﬂ,ué‘m_ﬂvy_

L

t+1

e By streaming along a direction (e.g. T)

® reuse 7 of 8 neighbouring spinors

e due to even-odd coloring: no reuse of links

- unless multiple Dslash applications: temporal blocking
t-1

M. Smelyanskiy, K. Vaidyanathan, J. Choi, B. Joo, J. Chhugani, M. A. Clark, P. Dubey, “High- Z
Performance Lattice QCD for Multi-core Based Parallel Systems Using a Cache-Friendly Hybrid \
Threaded-MPI Approach”, SC’11 —Y

..!effegon Lab Thomas Jefferson National Accelerator Facility

Basic Performance Bound for Dslash

e R = # of reused input spinors 1320
e r =0 for streaming store = 8G /B, + (8 — R+71)/B, + S/B,
= 1 for ‘read-for-write’.
* Br=read bandwidth Reuse | Streaming Compress SP
e By = write bandwidth (R) Store FLOPS/B
e G = size of Gauge Link matrix (bytes) 0 No No 0.86
®* S =size of Spinor (bytes) 0 Yes No 0.92
o an as . - E:,’;Z}B) a1 Q2 Qs 0 Yes Yes 1.06
by by b3 ;(“b) il gg gg 7 Yes No 1.72
xR ! ° 5 7 Yes Yes 2.29

..!effegon Lab Thomas Jefferson National Accelerator Facility

Performance limits for Xeon Phi KNC

e Peak Mem Bandwidth 4096 — | | | |

Peak Vectorized SP FLOPS (2021 GF)

IS quoted as 320 GB/s 0T g

® In reality streams
achieves around
150-170 GB/sec e

e “Unvectorized” 0 eak é N Peak Unvectorized SP&DP FLOPS (126 GF_)
assumes Vector Unit is G .,)
used (but only 1 lane) 16 —ocnn

- ie. 2 FLOP/cycle 3F 13 GBisec
- same ‘unvectorized i B
peak’ for DP as SP 2 n
s s T 2 4 s 6 m

Arithmetic Intensity (FLOPS/B)

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Rooflines - SP

e Poor Bandwith Use
Example:

- E.qg.if 43 GB/sec sustained

- Completely memory bound,
vectorization won't help

..!effe?son Lab

GFLOPS

Peak Vectorized SP FLOPS (2021 GF)

Peak Unvectorized SP&DP FLOPS (126 GF)

— 170 GB/s
— 320 GB/s
B R:O N | —— 43 GB/sec
- No. SS Poor B/W utilization: B
_ AI=0.86 | Max: ~37 GF (SP) -
O.|25 O|.5 : |1 |2 éll E|3 1|6 3|2

Arithmetic Intensity (FLOPS/B)

Thomas Jefferson National Accelerator Facility

Rooflines - SP

e |f you could exhaust B/W:. 4096 — | » | |
Peak Vectorized SP FLOPS (2021 GF)

- alignment
- L2 (&L1) prefetching 512
- large memory pages(?) 20

e Nalve case (no reuse etc) % Peak Unvectorized SP&DP FLOPS (126 GF)
T 64 _
(1
- Compute bound for ° 3 _
unvectorized arithmetic 16 . — 170 GB/s
. — 320 GB/s
- . . S — — 43 GB/sec
g U O IR, B
| L Al=0 .86 F/BE Max Unvec: 126 GF -
- use further bandwidth 1 o | | | | |
SaVIng trICkS " . > 1 Arithme%ic Intensit;1 (FLOPS/]E?) 1€ -

.!effe?son Lab Thomas Jefferson National Accelerator Facility

Rooflines - SP

. 4096
® Add Streamlng StOreS | |Peak Vectl)rized SP FlLOPS (202|1 GF)

L, 128 .
% Peak Unvectorized SP&DP FLOPS (126 GF)
531 64 _
32 _
16 — 170 GB/s
, — 320 GB/s
8 R=O — 43 GB/sec
Al SS, 5 Max: 156.4 GF B
5 Max Unvec: 126 GF
2-AI=0.92 F/B -
L | | | | | | |
0.25 0.5 1 2 4 8 16 32

Arithmetic Intensity (FLOPS/B)

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Rooflines - SP

e Add Streaming Stores
e Add Cache reuse
e Add 2-row compression
e B/W bound, free FLOPS

GFLOPS

Peak Vectorized SP FLOPS (2021 GF)

Peak Unvectorized SP&DP FLOPS (126 GF)

64 _

e Max ~ 3x Max Unvec. 32 -
: . : . 16 — 170 GB/s
- vectorization Is desirable — 320 GBIs
8 R=7 — 43 GB/sec

AL 3s 5 Max: 389 GF B

- A1=2 29 F/B ;I\/Iax Unvec: 126 GF -

s s 1 2 4 & 16 2

Arithmetic Intensity (FLOPS/B)

Thomas Jefferson National Accelerator Facility

4effe?son Lab

Enemies of performance

e |dleness, Dependency, Inefficiency and Overheads

- Lowest performance is when the chip is idle
e using only a single core from a multi-core node (rest are idle)
e microarchitectural issues (pipeline stalls, etc)
e waiting for message to arrive from other node, data to arrive from memory
e waiting for a hardware resource (register, or FP Unit) to become available
e waiting for other threads to reach a certain point in a calculation (barrier)

- Inefficient use of a resource

® ¢.g. not maximizing memory bandwidth, by reading unaligned data or by
not achieving ‘coalesced’ reads (on a GPU).

- Some operations just take a “long” time, overhead on useful computation
e ¢.g. Create and Join threads, thread barriers, synchronization

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Communicating Between Nodes

L |

e (Often need to communicate 1
between nodes . -)

- point-to-point ”

* boundary exchange for
nearest neighbours

- global sums/inner products

e Krylov solvers _ - _

- all-to-all communiations ”

® |n some cases, think of
communication as a ‘remote
memory access’

L |

“Nearest Neighbour “Ghost
Zone” (face) exchange

L |

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Tree Reduction
(e.g. sum)

Message passmg constraints

e Sending message has a T T T T T T T et
g g LatenCy Bound NCSA MP| ——<—
start-up time (latency) and a 600 | 3 -
flow-rate (bandwidth)
500
e Similar in some sense to .
DRAM 2 400 A -
e Message can be latency or & 300 w S A B S _
bandwidth bound given its :
sjze. 200 L Bandwidth bound -
e Can use asynchronous 100 SIS = o . :
message passing to hide A o
communication (Overlap 0 krcsmondoomemcacs 1‘310'0 000 10000 100000 1e+06 16407

Message size, bytes

compute with comms)
Performance of MPI over infiniband: http://lch.fnal.gov/benchmarks/newib/index.html

..!effegon Lab Thomas Jefferson National Accelerator Facility

http://lqcd.fnal.gov/benchmarks/newib/index.html

Mitigating Bottlenecks

e Some bottlenecks can be mitigated Start Communication

e QOverlap Communication with Computation
- Use asynchronous communication ‘ . »
- process interior while boundary data is in flight

e L. Process Interior
- breaks down if interior is too small

e Hide latency with parallelism 0 I I“

- If a thread is waiting on latency, switch to working
on another — GPUSs do this in hardware

e Reduce overheads if possible Finish Communication and Process boundary

- e.g. If thread fork/join is expensive collapse »
multiple #pragma omp parallel regions into one
(may need to use other synchronization)

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Art of Developing For High Perf.

e As you can see Developing for Performance can be a complex endeavor

e Many, hierarchical levels of concurrency to exploit:
- On Chip: Vectors (Intrinsics, language extensions) & Threads (OpenMP, pthreads, TBB)
- Inter-node: Message passing (MPI), Remote Memory Access (PGAS)

e Complex Memory Hiearachy
- Caches, Scratch-pads, DRAM etc

e Bottlenecks, inefficiencies, overheads
- Speeds & Feeds: Interconnect/System Bus/Memory/Instruction Latencies & Bandwidths
- Hardware Parallelism vs. Problem Parallelism mismatches

e Didn’t even discuss |/O, file transfer and other day-to-day minutiae

e (Good news: You have help to stay productive
- Frameworks, Optimized Libraries, Tools, People

.!effelgon Lab Thomas Jefferson National Accelerator Facility

Case Study: Lattice QCD for NP

« What kind of matter can QCD make?

 How does QCD make protons, neutrons?

— what are the distribution of quarks, gluons, etc in a proton or
neutron 7

« QCD must predict properties of light nuclei
— how to make helium, tritium etc

 How does QCD behave under extreme temperatures & pressures
such as in exploding starts or shortly after the Big-Bang.

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Methodology

e Lattice QCD - a formulation of QCD amenable to (0) = é / DA DG Dip O e~ SADD)
non-perturbative calculation
- quarks live on lattice sites
- gluons move to lattice links \7
e move from su(3) Lie Algebra to SU(3) Lie Group

e parallel transporters
- Euclidean time
- Path integrals become products of integrals
- Lattice Actions
e e.g. Wilson Gauge action O(a?) discretization error

e Fermion Formulation: O(a) or O(a?) discretization
typically

_S(Ua’&)w)

. a —
:] e

all links all sites

..!effe?son Lab Thomas Jefferson National Accelerator Facility

LQCD Calculation Workflow

auge Contigurations . Propagators, Correlation Functions ., = |lweonlesson 2

IL/LI'I'I___ it _

I "T:—.—;Q—:::: _:EE- 0 -

SITTI -
Gauge Generation Analysis Phase 1 Analysis Phase 2 Physics
(Monte-Carlo) (Propagators) (Stats/Fits) Result

e (Gauge Generation: Capability Computing on Leadership Facilities
- configurations generated in sequence using Markov Chain Monte Carlo technique
- focus the power of leadership computing onto single task exploiting data parallelism
e Analysis: Capacity computing, cost effective on Clusters

- task parallelize over gauge configurations in addition to data parallelism
- can use clusters, but also Leadership Facilities in throughput (ensemble) mode.

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Hybrid Monte Carlo (HMC)

1. Refresh momenta from Gaussian Heatbath

- generate (U,p) from (U,poiq) Hypersurface of Constant H
2. Compute H=H(U,p)
3. Perform Molecular Dynamics (MD) trajectory (U’ p/)
MD ’

- generate (U',p’)

- MD must be reversible and ‘area preserving’ (U, p) ¢
4. Compute H' = H(U',p’)

5. Accept with Metropolis probability

Momentum refreshment
6. If rejected new state is (U,p) @

(U, pole

e O(10000) trajectories per ensemble
® 60'800/0 Of Work in Linear SOIVerS (Quark IVID FOFCGS) (U,p) Phase Space

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Method for Computing Corr. Fn-s

e Distilllation: Two main components Specify Diagrams — @ > C

- propagator calculations (solver) S
- contraction calculations c
. . . Generate All ontract
e (Contractions use dense matrix mutliply Propagators Propagators
- matrix dimension is O(100) (# sources)
e Many solves needed on single q
configuration: Solver < Contractions
- #spin x #timeslice x #source x #quarks _—
e Tvpical Exampl Solution vectors (large)
ypica ampie Generalized Propagators (small)
- 4 spins, 256 timeslices, 386 source vectors /0O can be significant
and light + strange quarks

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Solvers

e Traditionally we solve the Linear Systems with

| | — ¢ is an Initial G
iterative Krylov Subspace solvers (¢0 = ¢ is an Initial Guess)

1. Compute 7o = x — MTMaoo, po = 70
[_
These can 2. For j 0.1,

- work as black boxes 3 o = T35 T4
7 (Mpj, Mpj)

... until convergence:

- typically need only L1 BLAS and MV operations

4. ¢j+1 = ¢ + a;p;

- typical candidates: Conjugate Gradients, BiICGStab 5. 1 = 15—y (MYM)
e (Convergence depends on condition number of M 6. 5, <rj<+1,rj>+1>
e As quark mass approaches the physical mass, M T i = 1ia1 + Bip

becomes more and more ill conditioned 8 End For
e (Critical Slowing Down in the Solver.

..!effegon Lab Thomas Jefferson National Accelerator Facility

Algebraic Multi Grid

Image From: http://computation.linl.gov/casc/sc2001_fliers/SLS/SLS01.html

e Critical Slowing down is caused by ‘near zero’
modes of M % 48

e Multi-Grid method
- separate (project) low lying and high lying modes

- solve for high lying modes with “smoother” [
: : 1000 | —— T T
- solve for low modes on coarse grid with reduced | PheabetamEae
dimensional operator b e Tedmesion mutignd —— |
- Gauge field is ‘stochastic’, so no geometric smoothess Pl o
on low modes => algebraic multigrid g
- Setting up restriction/prolongation operators is costly

10 |

- Easily amortized in Analysis with O(100,000) solves

-0.088 -0.086 -0.084 -0.082 -0.08 -0.0/8 -0.076 -0.074
mass

Multi-Grid. figure from J. C. Osborn et. al. PoS Lattice 2010:037,2010, R. Babich et. al.
Phys. Rev. Lett, 105:201602,2010

.!effe?son Lab Thomas Jefferson National Accelerator Facility

http://computation.llnl.gov/casc/sc2001_fliers/SLS/SLS01.html

Scaling Bottleneck Example:

R.Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, S. Gottlieb. “Scaling Lattice QCD Beyond 100 GPUs”
Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC’11)

- page 70:1-70:11, New York, NY, USA, ACM (2011) PS One Of the Orlglnal flndlngs was
256 7 l | 1 l | : T

that strong scaling was difficult
with accelerators

128 I~ -

e |nter-device communications
was considered to be the main
bottleneck

Gflops per GPU
A
|
|

e e Mismatch of bandwidths

2l = . - 8+8 GiB on PCle Gen2

SP=Single Precision (32bit) _
HP=Half Precision (16bit) - ~150-170 GB/sec on device

16— L . L L L e Spurred the development of
Domain decomposed solvers...

Number of GPUs

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Architecture Awareness

o Attempt to deal with communications bottleneck:

- don’t communiate at all

e Use a block-diagonal operator as a
‘preconditioner’ in the solver

- |nner-outer scheme

 Arrange to spend most time in the preconditioner.

e But be aware:

- block diagonal operator is a ‘wavelength filter’

- outer scheme still needs to deal with long wavelength
modes

e Example of interplay of architecture, algorithm,
applied maths and physics.

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Solver Performance

Strong Scaling, QUDA+Chroma+QDP-JIT(PTX)

e QUDA Solver performance on Titan 40— 71— 71— 1 71 1

- Cray XK7 system w0 j
- 1 NVIDIA K20X GPU per node 2901 G-© BICGStab: 72256 -
oo 300 E-£ DD+GCR: 72°x256 u
o 250 3]
e The DD+GCR solver does Q “~ DD+GCR: 96 x256

considerably better than the L'tfzz: //E' :
standard BiCGStab ool) -
e But even DD+GCR is affected by ' . -

A -©
50 Ca ~
StrOng Scaling effeCtS - | | | | B. Jloo, F. V\{inter (JLIab), M. (flark (NVIIDIA)-

OO 512 1024 1536 2048 2560 3072 3584 4096 4608
Titan Nodes (GPUSs)

o
\J

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Non-Solver Performance

_ 1)
Sor=-p7z ® Amdahl’s Law
4 Accelerate by 6x - If yOu Speed up (para”ellze/ 17\;;303X256 sites, 2 + 1 flavors of Anisotropic Clover, m_~ 230 MeV, t=0.2, 2:3:3 Nested Omelyan
T optimize) portion P of your S
P)40 i @®—@® CPU only (XE Nodes) _
o % code, overall speedup 15000 & T R,
ém%-— P limited by 1-P portion 12500 - CPU+QUDAGER) en| -
5 oo - “what you don’t speed up ?;f’mooo_ _
Original Accelerated WI” become your neXt %’ o0l e |
bottleneck.” £
L L A I UL L B =
_ _ u ~— _
Lo EE - E.g. HMC on GPUs: after | - _
L= _‘ solver is optimized, non- 2500 *-
L5 ‘ solver part becomes the e
| b Ottl en e Ck OO 200 400 600 800 1000 1200 1400 1600 1800
. . XE Sockets / XK Nodes
F. T. Winter, R. G. Edwards, M. A. Clark, B. Joo, IPDPS'14
0 i'l'("é. .‘l' TR

..!effe?son Lab Thomas Jefferson National Accelerator Facility

Part 2: Summary

e |[n Part 1 we were thinking about the forms of parallelism and how to program them
- threads, vectors, processes, etc.

e |n Part 2 we thought more about performance and what it means
- how to think about performance — roofline models, case study with Wilson Dslash
- what are the obvious enemies of performance — and how to attempt to mitigate them
- finally we took a case study of a lattice QCD campaing
e Stages of the computation
e The key algorithms
e Architectural factors such as GPUs
e How software and algorithms can surmount some of these challenges.

Jeffegon Lab Thomas Jefferson National Accelerator Facility

Overall Summary

e High Performance Computing is a ‘3rd pillar ’ of Science
- Attempts to fill the gap between experiment/observation and theory

e High Performance Computers are multi-faceted complex systems

- performance these days is delivered through parallelism/concurrency
- power is the key limiter: Efficiency was: FLOPS/$, now it is FLOPS/W x W/$.

e |nterplay between Architecture, Algorithm Choice, and Performance Optimization
- natural for HPC projects to be multi-disciplinary (e.g. SCiDAC)

e High Performance doesn’t have to be ‘Big Iron’ - tho some of us like that :)

e Performance is always relative. If you choose your algorithms, libraries, and
develop your code, to best exploit your hardware, you’re doing HPC

.!effelgon Lab Thomas Jefferson National Accelerator Facility

