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Estimation

« Everyday life: It means a rough and imprecise
procedure leading to a rough and imprecise
result. You estimate when you cannot measure
exactly

o« Statistics: Technical term. It is a precise and
accurate procedure, leading to a result which
may be imprecise, but where at least the extent
of the imprecision is known
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ProEerties of Estimators

e An estimator is a procedure applied to the data
sample which gives a numerical value for a
property of the parent population or, as
appropriate, a property or parameter of the
parent distribution

« A"good” estimator is consistent, unbiased, and
efficient
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Consistencx

« An estimator is consistent if it tends to the true value as
the number of data values tend to infinity:
lim a=a
N —00
 For a finite number N we cannot hope that for a particular
sample data 4 will have the same value as true a. But we

can require that chances of an overestimation balance
those of an underestimate. Such estimator is unbiased.

e It is not usually difficult to find a consistent estimator, as the
law of large numbers is on your side.
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Bias

e An estimator is unbiased If its expectation
value is equal to the true value
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Efficiencx

o An estimator is efficient if its variance is small
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Take-Home I\/Iessage

« The choice of estimator to use in a particular application requires
judgement

« There is no “ideal best estimator”
« Two reasons for this
« Variance of the estimator depends on the distribution concerned

« Detailed analysis may show that the most efficient estimator is
biased. You have to weigh the relative merits of one estimator to
another
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Likelihood

 The data values x; are drawn from some
probability density function P(x;a) which
depends on a

« The probability of a particular set of data

{x1,X2,..,xn} IS the product of the individual
probabilities. This product is called likelihood:

L(x17$27 ...,Q?N;CL) — HP('Q?Z)CL)
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Minimum Variance Bound gMVBZ

« There is a limit to the accuracy of an estimator

e For an unbiased estimator

1
Via) >
@) 2 < dlog L/da >
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Maximum Likelihood

* The principle of maximum likelihood is a method
for estimation

 For a data sample {xj,...,.xn} the maximum
likelihood estimator & is the value of a for which
likelihood iIs a maximum

N
L(x17$27 ...,Q?N;CL) — HP('Q?Z)CL)
1=1

e Usually instead of the likelihood you maximize
the logarithm of the likelihood

@) ENERGY &A HUGS, June, 2015

.}efferson Lab



ExamEIe: Lifetime

1
P(t) = —e t/7
(t) = —¢

tz’/T

log L = —Zlog 6_7_ _ _Z {% +log7']

|: dr :|T—7A‘__Z<§ 7/:>_

Notice that this estimation employs events!

&
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Notes on Maximum Likelihood

« ML is a sensible way of producing an estimator
o It estimates the value that makes your data “most likely”

« For large samples, & has a probability distribution that is unbiased and
normally distributed about the true value a, with variance equal to the MVB, so
in the large N limit it is the best estimator. For smaller samples this not
necessarily true

« The method provides errors: 10 are those where the log likelihood falls by 1/2
« For small N, ML estimators are usually biased
« Be careful not to apply large N formulae to small N.

e You have been warned

« You need to know the parent distribution function. If your assumptions about
P(x;a) are wrong...
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If random variables are independent and Normal distributed

N N 2

({a}) =] Ipla) ~ exp | =3 za;g - H 2]

i=1 =1

x Distribution for v=2,5,10

- : Fig. from M. DOring
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X2

X2/d0f— Z[ ({z};{a}) — Exp;({z})

N—p P AExp;({z})

Expected value =1




OEtimization 101

B Calculus based methods
B Direct (hill-climbing, gradient-based)
2 Indirect

B Enumerative

B Stochastic
B Stochastic hillclimbing
B Simulated annealing
B Genetic algorithms
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OEtimization 101
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How to avoid local minima

B Gradient-based
M MC + hope for the best

B Stochastic hillclimbing
M MC + hope for the best

B Simulated annealing
M Guaranteed for T—®

B Genetic algorithms
M Guaranteed for T—®
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What is a good fit?

Depends on what you are doing...

And that is the best answer | have

You need to use your best knowledge to
separate the signal from the noise
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Risky business: putting limits in the parameters

......................




Beyond the x=: Run test

* Wald-Wolfowitz run test
* Tests the hypothesis that each element is independent of the next
* X2 tests distance, Run Test tests the distribution of the data

N=N,+N_
2N, N_
= 1
o 2NGNENN_ —N) - (p—1)(p = 2)
N2(N — 1) N—1

Another options to improve the analysis are:

™ Kolmogorov-Smirnov test
™ Wilcoxon signed rank test
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Confidence level and uncertainties

Once we have the parameters we need a method to
assess uncertainty

Look at the whiteboard

Recommendation: Take a look at Cowan’s book chapter 9
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Error ellipse
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Hessian method

) = o) = 5 ¥ PG AT A0 80, + 003

t,]

_ %(AQ)TH({CL})(ACL) +0(3)

Compute eigendirection
Compute eigenvalues
Rotate

Compute X2min + 1
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BootstraE

(This slide intentionally left blank)
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BootstraE

The place where | have found the best explanation on bootstrap:
W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery,

Numerical Recipes: The Art of Scientific Computing (Cambridge
University Press, 1992)

and talking to Michael Doring from George Washington University
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Take home Eoints

o Be practical: get the best possible fit
o Beware of local minima

o Estimator:
o Maximum Likelihood for events
o X2 for binned data

o X2 is not everything (but it certainly matters)

o Errors are not one-dimensional quantities
o If (code=fast) bootstrap else hessian

£
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Hands on

o Written in Python2

o You need to have installed: check your e-mail
o Download code from:
o https://github.com/nobuosato/HUGS2015/tree/master/

o If you do not have software installed and codes
downloaded DO IT NOW during the break
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