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Estimation

• Everyday life: It means a rough and imprecise 
procedure leading to a rough and imprecise 
result. You estimate when you cannot measure 
exactly

• Statistics: Technical term. It is a precise and 
accurate procedure, leading to a result which 
may be imprecise, but where at least the extent 
of the imprecision is known
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Properties of Estimators

• An estimator is a procedure applied to the data 
sample which gives a numerical value for a 
property of the parent population or, as 
appropriate, a property or parameter of the 
parent distribution

• A “good” estimator is consistent, unbiased, and 
efficient
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Consistency

• An estimator is consistent if it tends to the true value as 
the number of data values tend to infinity:

• For a finite number N we cannot hope that for a particular 
sample data â will have the same value as true a. But we 
can require that chances of an overestimation balance 
those of an underestimate. Such estimator is unbiased.

• It is not usually difficult to find a consistent estimator, as the 
law of large numbers is on your side.

lim
N!1

â = a
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Bias

• An estimator is unbiased if its expectation 
value is equal to the true value

< â >= a
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Efficiency

• An estimator is efficient if its variance is small
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Take-Home Message

• The choice of estimator to use in a particular application requires 
judgement

• There is no “ideal best estimator”

• Two reasons for this

• Variance of the estimator depends on the distribution concerned

• Detailed analysis may show that the most efficient estimator is 
biased. You have to weigh the relative merits of one estimator to 
another 
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Likelihood

L(x1, x2, ..., xN ; a) =
NY

i=1

P (xi; a)

• The data values xi are drawn from some 
probability density function P(x;a) which 
depends on a

• The probability of a particular set of data 
{x1,x2,..,xN} is the product of the individual 
probabilities. This product is called likelihood:
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Minimum Variance Bound (MVB)

• There is a limit to the accuracy of an estimator

• For an unbiased estimator

V (â) � 1

< d logL/da >
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Maximum Likelihood

• The principle of maximum likelihood is a method 
for estimation

• For a data sample {x1,...,xN} the maximum 
likelihood estimator â is the value of a for which 
likelihood is a maximum

• Usually instead of the likelihood you maximize 
the logarithm of the likelihood

L(x1, x2, ..., xN ; a) =
NY

i=1

P (xi; a)
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Example: Lifetime
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Notice that this estimation employs events!
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Notes on Maximum Likelihood

• ML is a sensible way of producing an estimator

• It estimates the value that makes your data “most likely”

• For large samples, â has a probability distribution that is unbiased and 
normally distributed about the true value a, with variance equal to the MVB, so 
in the large N limit it is the best estimator. For smaller samples this not 
necessarily true

• The method provides errors: 1σ are those where the log likelihood  falls by 1/2

• For small N, ML estimators are usually biased

• Be careful not to apply large N formulae to small N. 

• You have been warned

• You need to know the parent distribution function. If your assumptions about 
P(x;a) are wrong...
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χ2

If	  random	  variables	  are	  independent	  and	  Normal	  distributed

P ({a}) =
NY

i=1

p(ai) ⇡ exp
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PHYS 6710: Nuclear and Particle Physics II

chi-square Distribution - Properties

● Rename              “degree of freedoms” → Meaning later. 

● Mean, variance: 

● Narrow Normal distribution for 

Fig.	  from	  M.	  Döring
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χ2

�

2
/dof =

1

N � p

NX

i=1


f({x}; {a})� Expi({x})

�Expi({x})

�2

Expected	  value	  =	  1



HUGS, June, 2015

Optimization 101

 Calculus based methods
  Direct (hill-climbing, gradient-based)
  Indirect

  Enumerative

  Stochastic
  Stochastic hillclimbing
  Simulated annealing
  Genetic algorithms
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Optimization 101LANDSCAPE 

LANDSCAPE 
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How to avoid local minima
 Gradient-based

  MC + hope for the best

  Stochastic hillclimbing
  MC + hope for the best

  Simulated annealing
  Guaranteed for T→∞

  Genetic algorithms
  Guaranteed for T→∞
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What is a good fit?

Depends on what you are doing…

And that is the best answer I have

You need to use your best knowledge to 
separate the signal from the noise
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Risky business: putting limits in the parameters

y 2 [a, b] , x 2 (�1,1)

x = arcsin


2(y � a

b� a

+ 1

�

y = a+
b� a

2
(1 + sinx)
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Beyond the χ2: Run test
• Wald-Wolfowitz run test
• Tests the hypothesis that each element is independent of the next
• χ2 tests distance, Run Test tests the distribution of the data

Another options to improve the analysis are:

 Kolmogorov-Smirnov test
 Wilcoxon signed rank test

N = N+ +N�

µ =
2N+ N�

N
+ 1

�2 =
2N+N(2N+N� �N)

N2(N � 1)
=

(µ� 1)(µ� 2)

N � 1
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Confidence level and uncertainties

Once we have the parameters we need a method to 
assess uncertainty

Look at the whiteboard

Recommendation: Take a look at Cowan’s book chapter 9
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Error ellipse
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Parameter errors

● Consider fit hypothesis of last exercise of Exercise Sheet 2:

● True parameter values are known in this case. One of the tasks 
was to save a list with the parameter estimates         for every fit

● These estimates represent the minimal chi-square for a given 
data set. Repeating these fits for many data sets (all randomly 
distributed around                        ) resulted in this list. This is a 
scatter plot of your results:  

Observations:
● Parameter estimates are indeed distri-

buted around (1.0,0.5)
● There is a spread as expected from the

statistical nature of the ensemble data
● There is, moreover, an additional 

structure: Combinations of large a with
small b are favored → Parameters are
anti-correlated.
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Hessian method

�2({a})� �2
min({a}) =

1

2

X

i,j
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Compute eigendirection
Compute eigenvalues
Rotate
Compute χ2min + 1
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Bootstrap

(This slide intentionally left blank)
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Bootstrap

The place where I have found the best explanation on bootstrap:

W. H. Press, S. A. Teukolsky, W.T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing (Cambridge 
University Press, 1992)

and talking to Michael Döring from George Washington University
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Take home points

Be practical: get the best possible fit
Beware of local minima

Estimator:
Maximum Likelihood for events
χ2 for binned data

χ2 is not everything (but it certainly matters)

Errors are not one-dimensional quantities
If (code=fast) bootstrap else hessian
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Hands on

Written in Python2
You need to have installed: check your e-mail
Download code from:

https://github.com/nobuosato/HUGS2015/tree/master/

If you do not have software installed and codes 
downloaded DO IT NOW during the break


