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Selected references on QCD 

§  Textbooks on QCD 
§  QCD and Collider Physics – Ellis, Stirling, 

Webber 

§  Foundations of  Perturbative QCD: J. Collins 

§  Applications of  Perturbative QCD: R. Field 

§  Textbooks on Quantum Field Theory  
§  An Introduction to Quantum Field Theory: 

Peksin & Schroeder, as well as Sterman 

§  Quantum Field Theory and the Standard 
Model: M. Schwartz 

§  Quantum Field Theory in a Nutshell: A. Zee 

§  The structure of  the Nucleon: Thomas 
& Weise 

§  CTEQ collaboration 
http://www.phys.psu.edu/~cteq 

§  QCD Resource Letter: arXiv:
1002.5032 – Kronfeld-Quigg 
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Tentative plans 

§  Lecture 1: Introduction and overview 

§  Lecture 2 & 3: QCD collinear factorization and evolution 

§  Lecture 4 & 5: Operator analysis & TMD factorization 

§  Lecture 6: Phenomenology 
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The structure of  matter 

§  The exploration on the structure of  matter has a really long 
history 
§  Dalton 1803 (atom) 

§  Rutherford 1911 (nucleus) 

§  Chadwick 1932 (neutron) 

§  Gell-Mann and Zweig 1964 (quark model) 

§  Feynman 1969 (parton model), … 

§  Central goal of  nuclear science 
§  To discover, explore, and understand all forms of nuclear matter and the 

associated dynamics 
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Exploring the nucleon: fundamental importance in science 
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Know what we are made of:
Most abundant particles 

around us
Building blocks of all 

elements

Fundamental properties:
Proton mass, spin, 
magnetic moment,

understand them in terms 
of the internal degrees of 

freedom

Exploring QCD and 
strong interaction:

Confinement, 
Lattice QCD,

Asymptotic freedom, 
perturbative QCD, ...

Tool for discovery:
Colliding high energy nucleons

New Physics beyond SM
LHC, Tevatron, 
RHIC, HERA, ...



The proton in QCD 

§  Proton is made of   
§  2 up quarks + 1 down quarks 

§  + any number of  quark-antiquark pairs 

§  + any number of  gluons 

§  Fundamental questions for proton structure (what is the internal 
landscape of  the nucleons?) 
§  What are the momentum distributions of  quarks, antiquarks, and gluons? 

§  How are quarks and gluons distributed spatially? 

§  How do partons carry the proton spin-1/2? (spin and orbital angular 
momentum) 

§  How are these quark and gluon distributions correlated with overall nucleon 
properties, such as spin direction?  
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! valence
! sea

u 
d u

Infinite many … 

2007 nuclear physics long range plan 
EIC white paper 

Parton distribution functions (PDFs), Transverse momentum 
dependent distributions (TMDs), … 



Quantum Chromodynamics (QCD) 

§  Quarks and gluons carry a new degree of  freedom called 
“color” (color charge), their interaction is described by QCD 

§  QCD: the underlying theory of  the strong interaction 

§  Tools: 
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Lattice QCD, DSE method, perturbative QCD, models, … 



Asymptotic freedom and confinement 
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2004 Nobel Prize 

D. Gross      H.D. Politzer   F. Wilczek 



Experimental tool 

§  High energy scattering: one way to study the structure of  matter 
§  Originated from Rutherford’s experiment (1911) 

 

    

    

§  To extract information on the nucleon structure, we send in a 
probe and study the outcome of  the collisions 

9 Deep Inelastic Scattering (DIS)  Proton-Proton collisions 



The paradigm of  perturbative QCD 

§  The common wisdom: to trace back what’s inside the proton from 
the outcome of  the collisions, we rely on QCD factorization 

§  Hadron structure: encoded in PDFs 

§  QCD dynamics at short-distance: partonic cross section, 
perturbatively calculable 
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fparton(x)
Parton Distribution Functions (PDFs): 
Probability density for finding a parton in 
a proton with momentum fraction x 

σproton(Q) = fparton(x)⊗ σ̂parton(Q)
Universal (measured) calculable 



Universality of  PDFs: extraction from DIS 
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σproton(Q) = fparton(x)⊗ σ̂parton(Q)
Universal (measured) calculable ZEUS
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What Do We Know About Glue in Matter?

• Scaling violation: dF2/dlnQ2 and 

linear DGLAP Evolution ! 

G(x,Q2)! 
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Success of  QCD factorization 

§  Use the same set of  PDFs, one could describe other physics 
processes: jet cross section (p+p→jet+X) 

   

  

§  Emerged around 1980s, this picture has been very successful 
§  Higher order for short-distance 

§  Essential for physics beyond standard model 
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Jets (p. 4)

Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Hard Probes 2010 Hermine K. Wöhri : CMS results in pp collisions 
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!! Extending the high pT limit beyond Tevatron reach 

!! Accessing the low pT part using different 
    jet reconstruction algorithms 

!! Good agreement with NLO predictions 
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Spin structure of  the proton 

§  Proton is spin-1/2 particle, where does the spin of  the proton 
come from? 

§  How one might obtain these contributions through QCD 
factorization and perturbative computations? 
§  Quark helicity distribution 

 
§  Quark spin contribution 
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DIS with longitudinal polarized beam and target 

§  Longitudinal polarized DIS scattering 
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Best determined quark helicity distributions 

§  Best determined: Δu+Δu, Δd+Δd 

 

§  Similar idea for gluon at pp scattering 
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_ _ 



§  So far only collinear/longitudinal momentum information are 
studied, what about transverse motion? 

 

§  With both longitudinal and transverse information, one can 
construct a 3D picture of  the real nucleon in momentum space 

 

 

Going beyond collinear – 3D structure of  the proton 
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p = xP p = xP + k⊥



Parton’s transverse motion 

§  Parton’s transverse momentum is usually smaller than the 
longitudinal component in the proton, which moves very fast in 
the longitudinal direction, how do we probe the parton’s 
transverse motion? 

§  Use transverse spin as a probe: transverse-spin dependent 
observables are sensitive probes of  the partons transverse 
momentum as they can correlate with each other 
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p 
k~xp 

q 

Transverse spin physics 



Spin physics: excellent laboratory for QCD 
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§  We are looking into both the partonic dynamics at the short 
distance, as well as the nucleon structure at long distance 

QCD Factorization 



Transverse spin physics: birth and growth 

§  Remarkable development of  this field 
§  From the sidelines in strong interaction physics 

§  To center stage in our efforts to figure out QCD 

§  Numerous exciting new developments over recent years 
§  Differential citation grows exponentially as a function of  time 
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Example: experimental observable 

§  Consider a transversely polarized proton scattering with an 
unpolarized proton or lepton 
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SSA vanishes with collinear momentum only 

§  If  one assumes partons are purely collinear 

§  AN≠0: result of  parton’s transverse motion 

§  A new window: much richer QCD dynamics 
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Kane-Pumplin-Repko, 1978 

AN ∼ αs
mq√

s
→ 0



Unified view of  nucleon structure 

§  Wigner distributions 
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5D 

1D 

3D 



TMDs: rich quantum correlations 
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