Hadron Physics & QCD’s Dyson-Schwinger Equations

Lecture 1: A Continuum-QCD Primer

Ian Cloët
Argonne National Laboratory

30th Annual Hampton University Graduate Studies (HUGS) Program
1-19 June 2015
Argonne was the first national laboratory in the United States and was established 1st July 1946. It was originally formed to continue Enrico Fermi’s work on nuclear reactors as part of the Manhattan Project.

Today Argonne is a multidisciplinary research facility:
- hadron, nuclear and particle physics; supercomputing; material science; renewable energy; national security; etc
- ANL has 3350 staff & a budget of $750 million
What is Hadron Physics?

- Hadron Physics means to chart and compute the distribution of matter and energy within hadrons (and nuclei)
- mapping these types of correlations and exposing their influence has been a hallmark of nuclear physics since its inception

The piece of the Standard Model that is supposed to \textit{largely} describe this matter and energy is Quantum Chromodynamics (QCD)

However the study of Hadron Physics encompasses all aspects of the Standard Model
- e.g. electrons, muons and neutrinos are all used to probe hadron properties

Electroweak forces can also have profound impacts on hadrons; e.g.
- the Higgs mechanism gives the pion a small mass – \textit{if this was not so the strong force would have infinite range}; similarly the Higgs makes the neutron heavier than the proton – QCD + QED alone gives $M_p > M_n$
Hadron physics started about 10^{-6}s after the big bang and understanding the QCD mechanisms behind this will have profound implications.

- e.g. it will explain how massless gluons and light quarks bind together to form hadrons & thereby explain the origin of $\sim 98\%$ of the mass in the visible universe.

- the Higgs mechanism is largely irrelevant as a mass generating mechanism; however hadron/nuclear physics would be profoundly different without it!
There is Much More . . .

- Worth noting that hadron physics as we know it concerns as little as 4% of the mass-energy in the Universe; the nature of the rest is almost completely unknown.

- Dark Matter: There appears to be a halo of mysterious invisible matter engulfing galaxies – inferred from the rotational curves of the stars in the outer regions of these galaxies.

- Dark Energy: Discovered in 1998 through observation of distant supernovae, where the expansion of the Universe was found to be accelerating, contrary to expectation: 2011 Nobel Prize in Physics was awarded to the team leaders.
Key Questions in Hadron Physics

- What is confinement?
- How do quarks and gluons bind together to form hadrons?
 - how are they distributed and what are the key correlations
 - what is the origin of the nucleon mass
 - what gives rise to the nucleon anomalous magnetic moment
- How is angular momentum distributed among the quarks and gluons; e.g. spin crisis
- How do nuclei emerge from QCD? …

Difficult to know what lies beyond the Standard Model unless one first knows what is in the Standard Model;
e.g. NuTeV anomaly; muon $g - 2$; proton radius puzzle
With discovery of the Higgs boson the Standard Model is now complete.

Its formulation and verification are a remarkable and continuing story.

Electromagnetism: Feynman, Schwinger, Tomonaga – 1965 Nobel Prize: “for their fundamental work in quantum electrodynamics, with deep-ploughing consequences for the physics of elementary particles”

Weak interaction: Glashow, Salam, Weinberg – 1979 Nobel Prize: “for their contributions to the theory of the unified weak and electromagnetic interaction between elementary particles, including, inter alia, the prediction of the weak neutral current”
Standard Model of Particle Physics

Strong Interaction:
Gell-Mann’s and Zweig’s constituent quark theory (1964) was a critical step forward

Gell-Mann – Nobel Prize 1964:
“for his contributions and discoveries concerning the classification of elementary particles and their interactions”

Gross, Politzer, Wilczek – Nobel Prize 2004:
“for the discovery of asymptotic freedom in the theory of the strong interaction”

SM has 19 parameters which need to be determined by experiment

- 2 intrinsic to QCD: Λ_{QCD} & $\theta_{QCD} \leq 10^{-9}$
Motivation of Lectures

- Explore the non-perturbative structure of QCD, through the interplay of theory and experiment, as it relates to hadron and nuclear structure
 - hadron physics is fun because one can perform calculations, and use these results to confront & guide experiment
 - performing some simple but illustrative calculations will be a theme of these lectures

- We will focus on QCD’s Dyson-Schwinger Equations (DSEs)
 - other approaches with a direct connection to QCD include lattice-regularized QCD and effective field theories (e.g. χPT)

- Some of the advantages of the DSEs include
 - can explore a wider array of physics problems
 - may provide better insight into important physics mechanisms
 - facilitate a dynamic interplay between experiment and theory
Plan of Lectures

- Lecture 1 – A continuum-QCD primer
- Lecture 2 – The Dyson-Schwinger equations
- Lecture 3 – The pion and dynamical chiral symmetry breaking
- Lecture 4 – The nucleon and its electromagnetic structure
- Lecture 5 – Partonic structure of nucleons
- Lecture 6 – Partonic structure of nuclei
Recommended Reading

DSE review articles:

Key DSE articles:

- L. Chang, I. C. Cloët, C. D. Roberts, S. M. Schmidt and P. C. Tandy, “*Pion electromagnetic form factor at spacelike momenta*”, PRL 111, 141802 (2013);
Recommended Reading

- **NJL review articles:**

- **Key NJL articles:**
Recommended Reading

- **QCD and Hadron Physics:**
 - [White Paper for the 2015 Long Range Plan:](#) Drawn from presentations and input derived during and following the QCD Town Meeting, 13-15 September 2014, Temple University. Summary of successes in cold QCD from the last seven years and description of plans for the next ten years.

What is QCD?

- QCD is the only known example in nature of a fundamental quantum field theory that is innately non-perturbative

 - *a priori* no idea what such a theory can produce

- QCD is *likely* a perfect theory – nothing needs to be added or changed

 - validated over an incredible energy range: $0 < E < 8000 \text{ GeV}$

 - unlikely to break down at any energy scale: *asymptotic freedom*

- QCD has basically no intrinsic parameters: *all dimensionless ratios of observables can be determined without a single parameter* $[\theta_{\text{QCD}} \text{ likely zero}]$

 - just need one observable to define the scale, e.g. proton mass, $\Lambda_{\text{QCD}} \simeq 200 \text{ MeV}$

- **QCD is NOT an effective theory - it is a theory**

Possible that future extensions of the Standard Model will be based on the paradigm established by QCD: e.g. *extended technicolor*
Quantum Chromodynamics (QCD)

- QCD is the fundamental theory of the strong interaction, where the *quarks* and *gluons* are the basic degrees of freedom.

\[
(q^\alpha)_f^A = \begin{cases}
\text{colour} & A = 1, 2, 3 \\
\text{spin} & \alpha = \uparrow, \downarrow \\
\text{flavour} & f = u, d, s, c, b, t
\end{cases}
\]

- QCD is a non-abelian gauge theory whose dynamics are governed by the Lagrangian

\[
\mathcal{L} = \bar{q}_f \left(i\hat{\mathcal{D}} + m_f \right) q_f - \frac{1}{4} F^{a\mu\nu} F_{a\mu\nu};
\]

\[
i\hat{\mathcal{D}} = \gamma^\mu \left(i\partial_\mu + g_s A^a_\mu T^a \right)
\]

\[
F^{a\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu
\]

- Gluon self-interactions have many profound consequences.
Asymptotic Freedom in QCD

- At large energies or small distances, QCD interactions vanish logarithmically \(\Leftrightarrow \) asymptotic freedom
- Perturbation theory is a useful tool in this domain \(\Leftrightarrow \) factorization

\[
\alpha_{\text{QCD}}^{\text{LO}}(Q^2) = \frac{4 \pi}{(11 - \frac{2}{3} N_f) \ln \left(Q^2 / \Lambda_{\text{QCD}}^2 \right)}
\]

- \(\Lambda_{\text{QCD}} \) most important parameter in QCD [dimensional transmutation of \(g_s \)]
- \(\Lambda_{\text{QCD}} \simeq 200 - 300 \text{ MeV} @ 1 \text{ GeV} \)
 - Sets scale, QCD’s “standard kilogram”
- Gluon self-interactions make QCD profoundly different from QED

2004 Nobel Prize in Physics
At large energies or small distances, QCD interactions vanish logarithmically ⇐⇒ asymptotic freedom

Perturbation theory is a useful tool in this domain ⇐ factorization

\[
\alpha^{\text{LO}}_{\text{QCD}}(Q^2) = \frac{4\pi}{(11 - \frac{2}{3} N_f) \ln \left(\frac{Q^2}{\Lambda_{\text{QCD}}^2} \right)}
\]

\[
\alpha^{\text{LO}}_{\text{QED}}(Q^2) = \frac{\alpha(\mu^2)}{1 - \frac{2}{3\pi} \alpha(\mu^2) \ln \left(\frac{Q^2}{\mu^2} \right)} \approx \frac{1}{137} \quad 0.7\% \text{ change}
\]

2004 Nobel Prize in Physics

\[
\Lambda_{\text{QCD}} \approx 200 - 300 \text{ MeV} \quad @ 1 \text{ GeV}
\]

Gluon self-interactions make QCD profoundly different from QED

500% change
QCD is non-perturbative

- Momentum-dependent coupling \leftrightarrow coupling depends on separation
- Interaction strength between quarks and gluons grows with separation

At distance scales typical of hadron physics: $r \sim 0.2 \text{ fm} \simeq \frac{1}{4} r_p \implies \alpha_s \sim 0.5$

- Perturbation theory completely breaks down in this domain
- QCD interaction is non-perturbative over 98% of the proton’s volume

The truly interesting aspects of QCD – i.e. hadron physics – are in non-perturbative domain

Intimately tied to the coupling in the infrared are two emergent phenomena that characterize QCD and hadron physics: **Confinement & DCSB**
Discover the meaning of *confinement* and its relation to *dynamical chiral symmetry breaking* – origin of visible mass –
All known hadrons are colour singlets, even though they are composed of coloured quarks and gluons:

- baryons \((qqq)\) & mesons \((\bar{q}q)\)

Confinement conjecture:

particles that carry the colour charge cannot be isolated and can therefore not be directly observed

Related to 1 million Millennium Prize – Clay Mathematics Institute:

Yang-Mills Existence And Mass Gap: Prove that for any compact simple gauge group \(G\), quantum Yang-Mills theory on \(\mathbb{R}^4\) exists and has a mass gap \(\Delta > 0\).

- for \(SU(3)_c\) must prove that glueballs have a lower bound on their mass
- partial explanation as to why strong force is short ranged

Understanding confinement should be intimately related to the infrared properties of \(\alpha_s(Q^2)\) or QCD’s \(\beta\)-function:

\[
\beta(g_s) = \mu \frac{\partial g_s}{\partial \mu} \quad \text{&} \quad \alpha_s = \frac{g_s^2}{4\pi}
\]
Confinement is an empirical fact:
the cross-section for the production of any combination of asymptotic coloured states from a colour singlet state must vanish

Must be associated with a failure of the cluster decomposition property of quantum field theory

Folklore: “The color field lines between a quark and an anti-quark form flux tubes. A unit area placed midway between the quarks and perpendicular to the line connecting them intercepts a constant number of field lines, independent of the distance between the quarks.

This leads to a constant force between the quarks – and a large force at that, equal to about 16 metric tons.” Hall-D Conceptual Design Report(5)

Problem: in QCD 16 tonnes of force produces a lot of pions!
Confinement Folklore

Confinement is an empirical fact: *the cross-section for the production of any combination of asymptotic coloured states from a colour singlet state must vanish*

Must be associated with a failure of the cluster decomposition property of quantum field theory

Folklore: “The color field lines between a quark and an anti-quark form flux tubes. A unit area placed midway between the quarks and perpendicular to the line connecting them intercepts a constant number of field lines independent of the distance between them. This leads to a constant force between quarks - which, for a large quark, is equal to about 16 metric tons.”

Problem: in QCD 16 tonnes of force produces a lot of pions!
In the presence of *light quarks* the breaking of the flux tube appears to be an instantaneous non-localized process

- no evidence of localization of the $\bar{q}q$ pair creation as expected in flux tube picture

Paradigm for confinement in hadron physics is likely different from the flux tube picture
In the presence of light quarks the breaking of the flux tube appears to be an instantaneous non-localized process

- no evidence of localization of the $\bar{q}q$ pair creation as expected in flux tube picture

Paradigm for confinement in hadron physics is likely different from the flux tube picture
A Perspective on Confinement

In QCD confinement must be expressed through a dramatic change in the analytic structure of propagators for coloured states.

Interactions cause the real-axis mass-pole to move off axis and form, e.g., complex conjugate singularities—characterized by a dynamically generated mass-scale.

Is it plausible that confinement and DCSB—two phenomena so important in the Standard Model—can have different origins and fates?
Chiral Symmetry

- For massless quarks the QCD Lagrangian has a chiral symmetry
 - define left- and right-handed fields: $$\psi_{R,L} = \frac{1}{2} (1 \pm \gamma_5) \psi$$
 - The QCD Lagrangian then takes the form
 $$\mathcal{L} = \bar{\psi}_L i \not{D} \psi_L + \bar{\psi}_R i \not{D} \psi_R - \bar{\psi}_R m \psi_L - \bar{\psi}_L m \psi_R - \frac{1}{4} F_{\mu\nu}^a F^{\mu\nu}_a$$

- Therefore for $$m = 0$$ QCD Lagrangian has a chiral symmetry
 - $$SU(N_f)_L \otimes SU(N_f)_R \implies \psi_{L,R} \rightarrow e^{-i \omega_{L,R}^a T^a} \psi_{L,R}$$
 - $$SU(N_f)_V \otimes SU(N_f)_A \implies \psi \rightarrow e^{-i \omega_V^a T^a} \psi, \quad \psi \rightarrow e^{-i \omega_A^a T^a \gamma_5} \psi$$

- Chiral symmetry can be realized in two ways:
 - **Wigner-Weyl mode**: vacuum/interactions respects symmetry
 - **Nambu-Goldstone mode**: vacuum/interactions breaks symmetry
Dynamical Chiral Symmetry Breaking

- \mathcal{L}_{QCD} invariant under: $SU(N_f)_L \otimes SU(N_f)_R \iff SU(N_f)_V \otimes SU(N_f)_A$

- For $N_f = 2$, $SU(N_f)_V$ transformations correspond to the isospin hadronic mass spectrum tells us nature largely respects isospin symmetry
 - $m_{\pi^-} \simeq m_{\pi^0} \simeq m_{\pi^+}$, $m_p \simeq m_n$, $m_{\Sigma^-} \simeq m_{\Sigma^0} \simeq m_{\Sigma^+}$

- therefore $SU(N_f)_V$ is realized in the Wigner-Weyl mode

- $SU(N_f)_A$ transformations mix states of opposite parity
 - expect hadronic mass spectrum to exhibit parity degeneracy
 - $m_{a_1} - m_{\rho}$; $m_N - m_{N^*} \sim 500$ MeV
 - $m_u \simeq m_d \simeq 5$ MeV, cannot produce such large mass splittings
 - therefore $SU(N_f)_A$ must be realized in the Nambu-Goldstone mode

- Chiral symmetry broken dynamically
 - $SU(N_f)_L \otimes SU(N_f)_R \rightarrow SU(N_f)_V$
Goldstone’s Theorem

- **Goldstone’s theorem:**

 if a continuous global symmetry is broken dynamically, then for each broken group generator there must appear in the theory a massless spinless particle

- QCD’s chiral symmetry is explicitly broken by small current quark masses

 \[
 m_u \simeq 2 \text{ MeV}; \quad m_d \simeq 4 \text{ MeV} \quad \ll \Lambda_{QCD}
 \]

- For \(N_f = 2 \) expect \(N_f^2 - 1 = 3 \) Goldstone bosons: \(\pi^+, \pi^0, \pi^- \)

- physical particle masses are not zero – \(m_\pi \sim 140 \text{ MeV} \) – because of explicit chiral symmetry breaking: \(m_{u,d} \neq 0 \), however \(m_\pi/M_N \simeq 0.15 \)

- As we will see, in coming to understand the pion’s lepton-like mass, DCSB has been exposed as the most important mass generating mechanism for visible matter in the Universe

- Not apparent from \(\mathcal{L}_{QCD} \) and is an innately non-perturbative phenomena
Chiral Condensate; GT & GMOR Relations

- If a symmetry is dynamically broken some operator must acquire a vacuum expectation value, that is, $\langle 0 | \Theta | 0 \rangle \neq 0$.
- Operator must be Lorentz scalar and a colour singlet: \(\text{QCD} \implies \text{composite operator} \)

Simplest candidate for the DSCB order parameter is $\langle \bar{\psi} \psi \rangle = \langle \bar{u}u + \bar{d}d \rangle$

$$\langle 0 | \bar{\psi} \psi | 0 \rangle_{\mu=2 \text{GeV}}^{\overline{\text{MS}}} \simeq -(230 \text{ MeV})^3$$

Some important non-trivial consequences of DCSB

- $f_\pi g_{\pi NN} = M_N g_A$
 Goldberger–Treiman (GT) relation

- $f_\pi^2 m_\pi^2 = \frac{1}{2} (m_u + m_d) \langle \bar{u}u + \bar{d}d \rangle$
 Gell-Mann–Oakes–Renner (GMOR)

This is the standard interpretation, however some people e.g. Stan Brodsky, Craig Roberts and Peter Tandy have argued that in fact the vacuum condensate equals zero and the order parameters for DCSB are the in-hadron condensates, for example, $\langle \pi | \bar{q}q | \pi \rangle$
The axial-vector and pseudoscalar currents are

\[A^\mu_a (x) = \overline{\psi}(x) \gamma^\mu \gamma^5 t_a \psi(x) \quad \& \quad P_a (x) = \overline{\psi}(x) i \gamma^5 t_a \psi(x). \]

Pion to vacuum matrix elements of these operators are

\[\langle 0 \mid A^\mu_a (0) \mid \pi_b (p) \rangle = \delta_{ab} i f_\pi p^\mu \quad \& \quad \langle 0 \mid P_a (0) \mid \pi_b (p) \rangle = \delta_{ab} g_\pi. \]

PCAC: \[
\partial_\mu A^\mu_a = \overline{\psi} i \gamma^5 \{ m, t_a \} \psi \quad \Rightarrow \quad \partial_\mu A^\mu_a = (m_u + m_d) P_a,
\]

\[\langle 0 \mid \partial_\mu A^\mu_a \mid \pi_b (p) \rangle = \delta_{ab} f_\pi p^2 = (m_u + m_d) \langle 0 \mid P_a \mid \pi_b (p) \rangle = (m_u + m_d) \delta_{ab} g_\pi. \]

This gives the exact relation in QCD:

\[f_\pi m_\pi^2 = (m_u + m_d) g_\pi. \]

In chiral limit – \(f_\pi m_\pi^2 = 0 \) – important consequences

- ground state: \(m_\pi = 0 \) \(\Rightarrow \) \(f_\pi \neq 0; \) excited states: \(m_\pi \neq 0 \) \(\Rightarrow \) \(f_\pi = 0 \)

- decay constants for pseudoscalar excited states are zero

To complete the proof:

\[[Q^a_A, P_b] = -\delta_{ab} \frac{i}{2} \overline{\psi} \psi; \quad \int \frac{d^3 p}{2 p^0 (2 \pi^3)^3} \mid \pi_a \rangle \langle \pi_a \mid = 1 \]
A central goal of (the DOE Office of) Nuclear Physics is to understand the structure and properties of protons and neutrons, and ultimately atomic nuclei, in terms of the quarks and gluons of QCD.

Internationally, this is approximately a $1-billion/year effort in experiment & theory, with roughly $375-million/year in USA.

Experiment receives about 90% of these funds.

$1-billion/year is a similar size to the operating budget of CERN.

Facilities in: China, Germany, Japan & CERN.

2015 Long Range Plan expected to make an Electron Ion Collider number one priority for new construction in the USA.
In the USA Fermilab has a hadron physics program – MINERνA and SeaQuest experiments – and RHIC is purpose build QCD machine.

However, Jefferson Lab (JLab) is the preeminent hadron physics facility in the USA & worldwide [polarized e^- beam]

“Explore the fundamental nature of confined states of quarks and gluons”

“Discover evidence for physics beyond the standard model”

Completion of the JLab 12 GeV upgrade promises a new era in hadron physics

370-million in additional investment and will lead the worldwide hadron physics program for at least the next decade

Numerous key experiments:

- measurement of pion form factor to 6 GeV2
- nucleon sea-quark and gluon distributions; etc

[J. Dudek et al., arXiv:1208.1244 [hep-ex]]