Hadron Physics & QCD's Dyson-Schwinger Equations

Lecture 2: The Dyson-Schwinger Equations

Ian Cloët Argonne National Laboratory

HUGS 2015 Summer School

1-19 June 2015

Office of Science

A Toolkit for QCD

- QCD is innately non-perturbative and is characterized by two emergent phenomena: Confinement & DCSB
 - both these phenomena are *NOT* apparent from the QCD Lagrangian
- The QCD interaction is non-perturbative over 98% of the proton's volume
- Critical need for modern theory to guide modern experiment. *Desired attributes:*
 - must possess a direct link to QCD, so that Q[Gev] Q[Gev] Q[Gev] Q[Gev] Q[Gev] Q[Gev] QCD can be established
 - must be capable of calculating hadron wave functions
 - capable of connecting wave functions with Wigner distributions \implies generalized parton distribution and transverse momentum dependent distribution functions
 - must be able to unify meson & baryon properties
- Both lattice QCD and the DSEs provide such a framework

HUGS 2015

QCD's Dyson-Schwinger Equations

- The equations of motion of QCD ⇐⇒ QCD's Dyson–Schwinger equations
 - an infinite tower of coupled integral equations
 - must implement a symmetry preserving truncation
- Some key features of the DSEs:
 - provides a non-perturbative, continuum approach to QCD
 - hadrons are composites of quarks & gluons
 - Poincaré covariant and renormalizable
 - encapsulates dynamical chiral symmetry breaking \iff the generation of mass from nothing
 - oloured objects are confined ⇐⇒ exhibits colour confinement
 - its elements have a direct connection with QCD
- Computationally inexpensive so can therefore provide rapid feedback and guidance to experiment. *Physics is an empirical science* ⇔ *experiment*

QCDs Dyson–Schwinger Equations

ETC!

Roads to Discovery

- Meson and baryon spectroscopy
 - the discovery of exotic or hybrid hadrons would force a dramatic reassessment of the distinction between the notions of matter fields and force fields
- Exploit opportunities provided by new data on nucleon elastic and transition form factors
 - chart infrared evolution of QCD's coupling and dressed-masses
 - reveal correlations that are key to nucleon structure
 - expose the facts or fallacies in modern descriptions of nucleon structure
- Precision experimental study of valence region, together with theoretical computation of distribution functions and distribution amplitudes
 - computation is critical without computation an endless amount of data can only reveal a limited amount about the theory underlying strong interaction physics
 - The DSEs are an ideal tool with which to address these challenges!

Significant Progress using DSEs

- A novel understanding of quark & gluon confinement – and its consequences – is beginning to emerge
- Provides a compelling picture that connects the perturbative domain of QCD's Green functions with the infrared
 - a prominent example is for the quark propagator; soon to be a textbook result: *"Foundations of Nuclear & Particle Physics"*

- Arriving at a clear picture of how hadron masses emerge dynamically in a universe with light quarks through DCSB
- Detailed understanding of the Goldstone nature of the pion and its internal structure
- Performed realistic calculations of ground and excited state hadron wave functions whose structure reflects that of QCD
 - illuminated the important quark-quark correlations inside baryons

QCD's Gap Equation

• Most important DSE is QCD's gap equation \implies dressed quark propagator

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p)^{-1} = Z_2 \left(i \not p + m_0 \right) + Z_1 \int \frac{d^4k}{(2\pi)^4} g^2 D_{\mu\nu}(p-k) \frac{\lambda^a}{2} \gamma^{\mu} S(k) \Gamma^{a,\nu}(p,k)$$

- S(p) dressed quark propagator
- $D_{\mu\nu}(p-k)$ dressed gluon propagator
- $\Gamma^{a,\nu}(p,k)$ dressed quark-gluon vertex
- m_0 bare current quark mass
- Z₁, Z₂ vertex and quark wave function renormalization constants
- Gap equation is exact yet deceptively simply
 - sums a countable infinity of diagrams
 - impossible in perturbation theory

QCD's Gap Equation

• Most important DSE is QCD's gap equation \implies *dressed quark propagator*

• ingredients – dressed gluon propagator & dressed quark-gluon vertex

$$S(p)^{-1} = Z_2 \left(i \not p + m_0 \right) + Z_1 \int \frac{d^4k}{(2\pi)^4} g^2 D_{\mu\nu}(p-k) \frac{\lambda^a}{2} \gamma^{\mu} S(k) \Gamma^{a,\nu}(p,k)$$

• $D_{\mu\nu}(p-k)$ dressed gluon propagator

Gluon's Gap Equation

- - additional ingredients: ghost propagator; ghost-gluon vertex; 3-, 4-gluon vertices
- In covariant gauge gluon propagator has one dressing function

$$D^{\mu\nu}(q) = \left(\delta^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right)\Delta(q^2) + \xi \; \frac{q^{\mu}q^{\nu}}{q^4}$$

- usually choose Landau gauge ξ = 0; fixed point of the RGEs
- Gluons also possess a dynamically generated mass
- Dynamically generated masses for quarks and gluons means that QCD dynamically generates its own infrared cutoffs

HUGS 2015

Massive Gauge Bosons

 Careful analysis of the complex of quark, gluon and ghost gap equations yields the RGI function:

$$\hat{d}(k^2) = \frac{\alpha_s(\zeta)}{k^2 + m_q^2(k^2, \zeta)}$$

- Can identify a gluon mass function with the infrared scales: m²_g(0) = (0.46 GeV)²; α_s(0) = 2.77 ≃ 0.9 π
- Role of gluons with wavelength larger than 1/m_g(0) are greatly suppressed
- Hadron structure at low Bjorken-x is dominated by gluons
 - features in this regime must reflect infrared properties of gluon dressing function; e.g. gluon saturation @ an EIC

Massive Gauge Bosons

Truncations: A Persistent Challenge

- The quark-gluon vertex presents the biggest challenge and necessitates a truncation
- In general the quark-gluon vertex has the form

$$\Gamma^{a,\mu}_{gqq}(p',p) = \frac{\lambda^a}{2} \sum_{i=1}^{12} \Lambda^{\mu}_i f_i(p'^2,p^2,q^2) = \frac{\lambda^a}{2} \left[\Gamma^{\mu}_L(p',p) + \Gamma^{\mu}_T(p',p) \right]$$

- Truncation scheme that must maintain symmetries of theory
 - we will define the truncation in Landau gauge $(\xi = 0)$, so $SU(3)_c$ gauge invariance becomes a moot point
 - in principle could use the Landau-Khalatnikov-Fradkin transformations (LKFT) to tranform Green functions from one gauge to another

Preserving Symmetries

- The truncation must preserve the global symmetries of QCD, as well as exhibit DCSB and colour confinement
- Confinement can be checked by investigation of the analytic structure of the propagtors of coloured states
- To guarantee that the consequences of DCSB are respected need to be determine the properties of bound states
 - for relativistic two-body bound states these properties are given by the Bethe-Salpeter equation
 - kernels of the gap and Bethe-Salpeter equations must be intimately related

Ward–Takahashi identities

Consider the vector and axial-vector Ward–Takahashi identities (WTIs)

$$\begin{aligned} q_{\mu} \, \Gamma^{\mu}_{\gamma q q}(p', p) &= \hat{Q}_{q} \left[S_{q}^{-1}(p') - S_{q}^{-1}(p) \right] \\ q_{\mu} \, \Gamma^{\mu, i}_{5}(p', p) &= S^{-1}(p') \, \gamma_{5} \, t_{i} + t_{i} \, \gamma_{5} \, S^{-1}(p) + 2 \, m \, \Gamma^{i}_{\pi}(p', p) \end{aligned}$$

- relates quark-photon vertex and the inhomogeneous axial-vector & pseudoscalar vertices with quark propagator
- Satisfing these WTIs will guarantee, for example, electromagnetic current conservation and a robust realization of DCSB

• Therefore feedback from experiment can help constrain the elements of QCD within the framework provided by the DSEs

$$S(p)^{-1} = Z_2 \left(i \not p + m_0 \right) + Z_1 \int \frac{d^4k}{(2\pi)^4} g^2 D_{\mu\nu}(p-k) \frac{\lambda^a}{2} \gamma^{\mu} S(k) \Gamma^{a,\nu}(p,k)$$

- A leading symmetry preserving truncation to the DSEs is rainbow-ladder: $\frac{1}{4\pi} g^2 D_{\mu\nu}(p-k) \Gamma_{\nu}(p,k) \longrightarrow \alpha_{\text{eff}}(p-k) D_{\mu\nu}^{\text{free}}(p-k) \gamma_{\nu}$
- Need model for $\alpha_{\rm eff}(k^2)$ must agree with perturbative QCD for large k^2
 - Maris–Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

$$\alpha_{\rm eff}(k^2) = \frac{\pi D}{\omega^6} k^4 e^{-k^2/\omega^2} + \frac{24 \pi}{25} \left(1 - e^{-k^2/\mu^2} \right) \ln^{-1} \left[e^2 - 1 + \left(1 + k^2/\Lambda_{\rm QCD}^2 \right)^2 \right]$$

•
$$\mu = 1 \text{ GeV}, \quad \Lambda_{QCD} = \Lambda_{\overline{MS}}^{(4)} = 0.234 \text{ GeV}, \quad \omega D = (0.72 \text{ GeV})^3$$

Correct LO perturbative limit is build in:

- l in: $\alpha_{\text{eff}}(k^2) \xrightarrow{k^2 \to \infty} \frac{12}{25} \frac{\pi}{\ln[k^2/\Lambda_{\text{QCD}}^2]}$
- one parameter model for QCDs infra-red behaviour

QCD's Quark Propagator

• Quark propagator: $S(p) = \frac{Z(p^2)}{i \not p + M(p^2)} = \frac{1}{i \not p A(p^2) + B(p^2)}$

- Dynamical mass generation, $M \propto \langle \bar{q}q \rangle \iff \langle \bar{q}q \rangle \neq 0 \iff \text{DCSB}$
 - Higgs mechanism is almost irrelevant for light quarks
- DCSB generates 98% of the mass in the visible universe

• In perturbative QCD:
$$B(p^2) = m \left[1 - \frac{\alpha}{\pi} \ln \left(\frac{p^2}{m^2} \right) + \dots \right] \stackrel{m \to 0}{\to} 0$$

• QCD is an innately non-perturbative theory! The only example in nature *HUGS 2015*

QCD's Quark Propagator

• Quark propagator: $S(p) = \frac{Z(p^2)}{i \not p + M(p^2)} = \frac{1}{i \not p A(p^2) + B(p^2)}$

- Dynamical mass generation, $M \propto \langle \bar{q}q \rangle \iff \langle \bar{q}q \rangle \neq 0 \iff \text{DCSB}$
 - Higgs mechanism is almost irrelevant for light quarks
- DCSB generates 98% of the mass in the visible universe

• In perturbative QCD:
$$B(p^2) = m \left[1 - \frac{\alpha}{\pi} \ln \left(\frac{p^2}{m^2} \right) + \dots \right] \stackrel{m \to 0}{\to} 0$$

QCD is an innately non-perturbative theory! The only example in nature
HUGS 2015 14/31

Solving the QCD Gap Equation

$$S(p,\mu^2)^{-1} = Z_2(\mu^2,\Lambda^2) S_0(p) + \frac{4}{3} Z_1(\mu^2,\Lambda^2) \int g^2 D_{\mu\nu}(p-k) \gamma^{\mu} S(k,\mu^2) \Gamma^{\nu}(p,k)$$

- Use quark propagator: $S^{-1}(p,\mu^2) = i \not p A(p^2,\mu^2) + B(p^2,\mu^2)$
- Rainbow ladder truncation:

$$\frac{g^2}{4\pi} \Gamma^{\nu}(p,k) \to \alpha_{\rm eff}(k^2) \gamma^{\mu}, \qquad D_{\mu\nu}(k) \to D_{\mu\nu}^{\rm free}(k)$$

Use off-shell subtraction scheme for renormalization:

$$S(p)^{-1}\Big|_{p^2=\mu^2} = i p + m(\mu^2)$$

- $m(\mu^2)$ is the renormalized current quark mass: $m(\mu^2) = \frac{m_0(\Lambda^2)}{Z_m(\mu^2,\Lambda^2)}$
- Gap equation becomes set of coupled integral eqs. for $A(p^2)$ & $B(p^2)$:

$$A(p^2,\mu^2) = Z_2(\mu^2,\Lambda^2) A_0(p^2,\Lambda^2) \quad \& \quad B(p^2,\mu^2) = Z_2(\mu^2,\Lambda^2) B_0(p^2,\Lambda^2)$$

Then solve the two coupled equations by iteration

HUGS 2015

Charting Interaction between light quarks

- Formally, hadronic observables are related to QCD's Schwinger functions
- E.g., the quark propagator is a Schwinger function and the gap equation relates this to:
 - the gluon propagator: $D^{\mu\nu}(k)$
 - the quark-gluon vertex $\Gamma^{a,\mu}_{gqq}(p,p')$
- The quark propagator is the building block of hadrons in the DSEs

- The DSEs are therefore a tool that can relate QCD's Schwinger Functions to hadronic observables
- Measurements of, for example, the hadron mass spectrum, elastic and transition form factors, PDFs, etc must provide information on the long-range interaction between light quarks and gluons
- Interplay between DSEs & experiment provides a framework to extract infrared behaviour of QCD's Schwinger functions

HUGS 2015

The Simplest Truncation

- The full machinery of the DSEs provides a connection between QCD & experiment
 - there remains much to be explored, notably baryon PDFs, TMDs & GPDs
 - however DSEs calculations are time & resource intensive useful to have some physics intuition before embarking upon DSE studies

- To build intuition and understanding is it good to explore hadron structure with a simplified quark-gluon interaction
 - **)** Replace gluon propagator with a δ -function in configuration space:

$$g^2 D_{\mu\nu}(p-k)\Gamma^{\nu}(p,k) \rightarrow \frac{1}{m_a^2} g_{\mu\nu} \gamma^{\nu}$$

- This contact interaction framework is basically equivalent to the Nambu–Jona Lasinio (NJL) model
- The NJL model is a proven and powerful tool with which to explore hadron structure and guide experiment

The Nambu–Jona-Lasinio Model

- The Nambu–Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro Nambu and Giovanni Jona-Lasinio while at The University of Chicago
 - was inspired by the BCS theory of superconductivity
 - was originally a theory of elementary nucleons
 - rediscovered in the 80s as an effective quark theory
- It is a relativistic quantum field theory, that is relatively easy to work with, and is very successful in the description of hadrons, nuclear matter, etc
- Nambu won half the 2008 Nobel prize in physics in part for the NJL model: *"for the discovery of the mechanism of spontaneous broken symmetry in subatomic physics"* [Nobel Committee]

• Proper-time regularization: $\Lambda_{IR} \& \Lambda_{UV} \Longrightarrow$ Confinement

- Quark propagator: $[p m + i\varepsilon]^{-1} \rightarrow Z(p^2)[p M + i\varepsilon]^{-1}$
 - wave function renormalization vanishes at quark mass-shell: $Z(p^2 = M^2) = 0$

Constructing the Lagrangian

• In general the NJL Lagrangian has the form

$$\mathcal{L} = \overline{\psi} \left(i \, \partial \!\!\!/ - m \right) \psi + \sum_{\alpha} \, G_{\alpha} \left(\overline{\psi} \, \Gamma_{\alpha} \, \psi \right)^{2}$$

- Γ_{α} represents a product of Dirac, colour and flavour matrices
- What about \mathcal{L}_I ? effective theories should maintain symmetries of QCD
- In chiral limit QCD Lagrangian has symmetries

 $\mathcal{S}_{QCD} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes U(1)_A \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

- $SU(N_f)_A$ is broken dynamically DCSB
- $U(1)_A$ is broken in the anomalous mode U(1) problem massive η'
- NJL interaction Lagrangian must respect the symmetries

 $\mathcal{S}_{NJL} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

- in NJL $SU(3)_c$ will be considered a global gauge symmetry
- $U(1)_A$ is often broken explicitly $\Longrightarrow m_{\eta'} \neq 0$

NJL Symmetries

$\mathcal{S}_{NJL} = SU(3)_c \otimes SU(N_f)_V \otimes SU(N_f)_A \otimes U(1)_V \otimes \mathcal{C} \otimes \mathcal{P} \otimes \mathcal{T}$

The NJL Lagrangian should be symmetric under the transformations

$$\begin{aligned} SU(N_f)_V : & \psi \longrightarrow e^{-it \cdot \theta_V} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{it \cdot \theta_V} \\ SU(N_f)_A : & \psi \longrightarrow e^{-i\gamma_5 t \cdot \theta_A} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{-i\gamma_5 t \cdot \theta_A} \\ U(1)_V : & \psi \longrightarrow e^{-i\theta} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{i\theta} \\ U(1)_A : & \psi \longrightarrow e^{-i\gamma_5 \theta} \psi & \bar{\psi} \longrightarrow \bar{\psi} e^{-i\gamma_5 \theta} \end{aligned}$$

Nambu and Jona-Lasinio chose the Lagrangian

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi + G_{\pi} \left[\left(\bar{\psi} \psi \right)^2 - \left(\bar{\psi} \gamma_5 \boldsymbol{\tau} \psi \right)^2 \right]$$

• Can choose any combination of these 4–fermion interactions

$$(\bar{\psi}\psi)^2, \quad (\bar{\psi}\gamma_5\psi)^2, \quad (\bar{\psi}\gamma^{\mu}\psi)^2 \quad (\bar{\psi}\gamma^{\mu}\gamma_5\psi)^2, \quad (\bar{\psi}i\sigma^{\mu\nu}\psi)^2, \\ (\bar{\psi}t\psi)^2, \quad (\bar{\psi}\gamma_5t\psi)^2, \quad (\bar{\psi}\gamma^{\mu}t\psi)^2, \quad (\bar{\psi}\gamma^{\mu}\gamma_5t\psi)^2, \quad (\bar{\psi}i\sigma^{\mu\nu}t\psi)^2.$$

NJL Lagrangian $(N_f = 2)$

• The most general $N_f = 2$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi + G_{\pi} \left[\left(\bar{\psi} \psi \right)^2 - \left(\bar{\psi} \gamma_5 \boldsymbol{\tau} \psi \right)^2 \right] + G_{\omega} \left(\bar{\psi} \gamma^{\mu} \psi \right)^2 + G_{\rho} \left[\left(\bar{\psi} \gamma^{\mu} \boldsymbol{\tau} \psi \right)^2 + \left(\bar{\psi} \gamma^{\mu} \gamma_5 \boldsymbol{\tau} \psi \right)^2 \right] + G_h \left(\bar{\psi} \gamma^{\mu} \gamma_5 \psi \right)^2 + G_\eta \left[\left(\bar{\psi} \gamma_5 \psi \right)^2 - \left(\bar{\psi} \boldsymbol{\tau} \psi \right)^2 \right] + G_T \left[\left(\bar{\psi} i \sigma^{\mu\nu} \psi \right)^2 - \left(\bar{\psi} i \sigma^{\mu\nu} \boldsymbol{\tau} \psi \right)^2 \right]$$

• \mathcal{L}_I is $U(1)_A$ invariant if: $G_{\pi} = -G_{\eta} \& G_T = 0$

$$\begin{split} \bar{\psi}\psi & \longleftrightarrow & \sigma & \longleftrightarrow & (J^P,T) = (0^+,0) \\ \bar{\psi}\gamma_5 \tau \psi & \longleftrightarrow & \pi & \longleftrightarrow & (J^P,T) = (0^-,1) \\ \bar{\psi}\gamma^\mu \psi & \longleftrightarrow & \omega & \longleftrightarrow & (J^P,T) = (1^-,0) \\ \bar{\psi}\gamma^\mu \tau \psi & \longleftrightarrow & \rho & \longleftrightarrow & (J^P,T) = (1^-,1) \\ \bar{\psi}\gamma^\mu \gamma_5 \psi & \longleftrightarrow & f_1, h_1 & \longleftrightarrow & (J^P,T) = (1^+,0) \\ \bar{\psi}\gamma^\mu \gamma_5 \tau \psi & \longleftrightarrow & a_1 & \longleftrightarrow & (J^P,T) = (1^+,1) \\ \bar{\psi}\tau \psi & \longleftrightarrow & a_0 & \longleftrightarrow & (J^P,T) = (0^+,1) \\ \bar{\psi}\gamma_5 \psi & \longleftrightarrow & \eta, \eta' & \longleftrightarrow & (J^P,T) = (0^-,0) \end{split}$$

NJL Lagrangian $(N_f = 3)$

• The most general $N_f = 2$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L} = \bar{\psi} \left(i \partial \!\!\!/ - m \right) \psi + G_{\pi} \left[\left(\bar{\psi} \psi \right)^2 - \left(\bar{\psi} \gamma_5 \tau \psi \right)^2 \right] + G_{\omega} \left(\bar{\psi} \gamma^{\mu} \psi \right)^2 + G_{\rho} \left[\left(\bar{\psi} \gamma^{\mu} \tau \psi \right)^2 + \left(\bar{\psi} \gamma^{\mu} \gamma_5 \tau \psi \right)^2 \right] + G_h \left(\bar{\psi} \gamma^{\mu} \gamma_5 \psi \right)^2 + G_\eta \left[\left(\bar{\psi} \gamma_5 \psi \right)^2 - \left(\bar{\psi} \tau \psi \right)^2 \right] + G_T \left[\left(\bar{\psi} i \sigma^{\mu\nu} \psi \right)^2 - \left(\bar{\psi} i \sigma^{\mu\nu} \tau \psi \right)^2 \right]$$

• \mathcal{L}_I is $U(1)_A$ invariant if: $G_{\pi} = -G_{\eta} \& G_T = 0$

The most general $N_f = 3$ NJL Lagrangian that respects the symmetries is

$$\mathcal{L}_{I} = G_{\pi} \left[\frac{1}{6} \left(\bar{\psi} \psi \right)^{2} + \left(\bar{\psi} \, \boldsymbol{t} \, \psi \right)^{2} - \frac{1}{6} \left(\bar{\psi} \, \gamma_{5} \, \psi \right)^{2} - \left(\bar{\psi} \, \gamma_{5} \, \boldsymbol{t} \, \psi \right)^{2} \right] \\ - \frac{1}{2} \, G_{\rho} \left[\left(\bar{\psi} \, \gamma^{\mu} \, \boldsymbol{t} \, \psi \right)^{2} + \left(\bar{\psi} \, \gamma^{\mu} \gamma_{5} \, \boldsymbol{t} \, \psi \right)^{2} \right] - \frac{1}{2} \, G_{\omega} \left(\bar{\psi} \, \gamma^{\mu} \, \psi \right)^{2} - \frac{1}{2} \, G_{f} \left(\bar{\psi} \, \gamma^{\mu} \gamma_{5} \, \psi \right)^{2} \right]$$

- Enlarging the $SU(N_f)_V \otimes SU(N_f)_A$ chiral group from $N_f = 2$ to $N_f = 3$ reduces the number of coupling from six to four
- The $N_f = 3$ Lagrangian is automatically $U(1)_A$ invariant
 - $U(1)_A$ is then often broken by the 't Hooft term a 6-quark interaction

$$\mathcal{L}_{I}^{(6)} = K \left[\det \left(\bar{\psi}(1+\gamma_{5})\psi \right) + \det \left(\bar{\psi}(1-\gamma_{5})\psi \right) \right]$$

NJL Interaction Kernel

• Using Wick's theorem and the NJL Lagrangian there are 2 diagrams for the interaction between a quark and an anti-quark

$$2i\,G\left[\Omega^{i}_{\alpha\beta}\overline{\Omega}^{i}_{\gamma\delta}-\Omega^{i}_{\alpha\delta}\overline{\Omega}^{i}_{\gamma\beta}\right]$$

- Using Fierz transformations can express each *exchange term* as a sum of *direct terms*
 - The SU(2) NJL interaction kernel then takes the form

$$K_{\alpha\beta,\gamma\delta} = 2i G_{\pi} \left[(\mathbb{1})_{\alpha\beta} (\mathbb{1})_{\gamma\delta} - (\gamma_{5}\boldsymbol{\tau})_{\alpha\beta} (\gamma_{5}\boldsymbol{\tau})_{\gamma\delta} \right] - 2i G_{\omega} (\gamma_{\mu})_{\alpha\beta} (\gamma^{\mu})_{\gamma\delta} - 2i G_{\rho} \left[(\gamma_{\mu}\boldsymbol{\tau})_{\alpha\beta} (\gamma^{\mu}\boldsymbol{\tau})_{\gamma\delta} + (\gamma_{\mu}\gamma_{5}\boldsymbol{\tau})_{\alpha\beta} (\gamma^{\mu}\gamma_{5}\boldsymbol{\tau})_{\gamma\delta} \right] + \dots$$

• This kernel enters the NJL gap and meson Bethe-Salpeter equations

Regularization Schemes

- The NJL model is non-renormalizable \implies cannot remove regularization
 - regularization parameter(s) play a dynamical role
- Popular choices are:
 - 3-momentum cutoff: $\vec{p}^2 < \Lambda^2$
 - 4-momentum cutoff $p_{E}^{2} < \Lambda^{2}$
 - Pauli-Villars
- We will use the proper-time regularization scheme

$$\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \ \tau^{n-1} \, e^{-\tau \, X} \ \to \ \frac{1}{(n-1)!} \int_{1/\Lambda_{UV}^2}^{1/\Lambda_{IR}^2} d\tau \ \tau^{n-1} \, e^{-\tau \, X}$$

- only Λ_{UV} is needed to render the theory finite
- however, as we shall see, Λ_{IR} plays a very important role; it prevents quarks going on their mass shell and hence *simulates quark confinement*

NJL Quark Propagator

- Complete expression for the quark propagator cannot be obtained
 - need a truncation
 - Do not in include diagrams like:

- would give a momentum dependent mass function
- Include all diagrams of the form:

All these diagrams can be summed via an integral equation

The most general quark propagator has the form

$$S(p) = \frac{1}{\not p - m - \Sigma(p)} = \frac{Z(p^2)}{\not p - M(p^2)}$$

The NJL gap equation has the form

$$S^{-1}(k) = S_0^{-1}(k) - \Sigma(k) = [k - m] - \sum_j \int \frac{d^4\ell}{(2\pi)^4} \operatorname{Tr}\left[S(\ell)\,\overline{\Omega}^j\right] \Omega^j$$

The only piece of the interaction kernel that contributes is:

$$K^{\sigma}_{\alpha\beta,\gamma\delta} = 2i G_{\pi} \left(\mathbb{1} \right)_{\gamma\delta} \left(\mathbb{1} \right)_{\alpha\beta}$$

Solving this equation give a quark propagator of the form

$$S^{-1}(k) = k - M + i\varepsilon$$

The constituent quark mass satisfies the equation

$$M = m + 48i \, G_{\pi} \, M \int \frac{d^4\ell}{(2\pi)^4} \, \frac{1}{\ell^2 - M^2 + i\varepsilon} = m + M \, \frac{3 \, G_{\pi}}{\pi^2} \int d\tau \, \frac{e^{-\tau \, M^2}}{\tau^2}$$

The True Ground State

$$M = m + M \,\frac{3\,G_{\pi}}{\pi^2} \int d\tau \,\frac{e^{-\tau\,M^2}}{\tau^2}$$

• For the case m = 0 the gap equation has two solutions:

- trivial solution: M = 0 & non-trivial solution: $M \neq 0$
- Which solution does nature choose, that is, which solution minimizes the energy. Compare vacuum energy density, *E*, for each case

NJL & DSE gap equations

• NJL constituent mass is given by: $M = m - 2 G_{\pi} \langle \bar{\psi} \psi \rangle$

Chiral condensate is defined by

$$\langle \bar{\psi}\psi \rangle \equiv \lim_{x \to y} \operatorname{Tr}\left[-iS(x-y)\right] = -\int \frac{d^4k}{(2\pi)^4} \operatorname{Tr}\left[i\,S(k)\right]$$

- Mass is generated via interaction with vacuum
- Dynamically generated quark masses $\iff \langle \overline{\psi}\psi \rangle \neq 0$
- $\langle \bar{\psi}\psi \rangle = \langle \bar{u}u + \bar{d}d \rangle$ is an order parameter for DSCB

Confinement in NJL model

In general the NJL model is not confining; quark propagator is simply

$$S(k) = \frac{1}{\not k - M + i\varepsilon} = \frac{\not k + M}{k^2 - M^2 + i\varepsilon}$$

• quark propagator has a pole \implies quarks are part of physical spectrum

However the proper-time scheme is unique

$$S(k) = \int_0^\infty d\tau \, (\not k + M) \, e^{-\tau \left(k^2 - M^2\right)} \to \underbrace{\frac{\left[e^{-(k^2 - M^2)/\Lambda_{UV}^2 - e^{-(k^2 - M^2)/\Lambda_{IR}^2}\right]}{k^2 - M^2}}_{\equiv Z(k^2)} [\not k + M]$$

- quark propagator does not have a pole: $Z(k^2) \stackrel{k^- \to M^-}{=} \frac{1}{\Lambda_{UR}^2} \frac{1}{\Lambda_{UV}^2} \neq \infty$
- Are confinement and DCSB related?
 - NJL model is proof that DCSB can exist without confinement
 - however commonly believed cannot have dynamically generated confinement without DCSB

Summary

- QCD and therefore Hadron Physics is unique:
 - must confront a fundamental theory in which the elementary degrees-of-freedom are intangible (confined) and only composites (hadrons) reach detectors
- QCD will only be solved by deploying a diverse array of experimental and theoretical methods:

- must define and solve the problems of confinement and its relationship with DCSB
- These are two of the most important challenges in fundamental Science
- The DSEs are an important tool with which to meet these challenges
 - the NJL model, while not sophisticated enough to directly address these issues within QCD, has and will continue to provide critical guidance