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A Toolkit for QCD
QCD is innately non-perturbative and
is characterized by two emergent
phenomena: Confinement & DCSB

both these phenomena are NOT apparent
from the QCD Lagrangian

The QCD interaction is non-perturbative
over 98% of the proton’s volume

Critical need for modern theory to guide
modern experiment. Desired attributes:

must possess a direct link to QCD, so that
connection with established predictions of (perturbative) QCD can be established
must be capable of calculating hadron wave functions
capable of connecting wave functions with Wigner distributions =⇒ generalized
parton distribution and transverse momentum dependent distribution functions
must be able to unify meson & baryon properties

Both lattice QCD and the DSEs provide such a framework
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒
QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral
equations
must implement a symmetry preserving
truncation

Some key features of the DSEs:
provides a non-perturbative, continuum
approach to QCD
hadrons are composites of quarks & gluons
Poincaré covariant and renormalizable
encapsulates dynamical chiral symmetry breaking⇐⇒ the generation of mass
from nothing
coloured objects are confined⇐⇒ exhibits colour confinement
its elements have a direct connection with QCD

Computationally inexpensive so can therefore provide rapid feedback and
guidance to experiment. Physics is an empirical science⇐⇒ experiment
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QCDs Dyson–Schwinger Equations

ETC!
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Roads to Discovery
Meson and baryon spectroscopy

the discovery of exotic or hybrid hadrons would force
a dramatic reassessment of the distinction between
the notions of matter fields and force fields

Exploit opportunities provided by new data on
nucleon elastic and transition form factors

chart infrared evolution of QCD’s coupling
and dressed-masses
reveal correlations that are key to nucleon structure
expose the facts or fallacies in modern descriptions of nucleon structure

Precision experimental study of valence region, together with theoretical
computation of distribution functions and distribution amplitudes

computation is critical – without computation an endless amount of data can only
reveal a limited amount about the theory underlying strong interaction physics

The DSEs are an ideal tool with which to address these challenges!
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Significant Progress using DSEs
[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]

A novel understanding of quark & gluon
confinement – and its consequences –
is beginning to emerge

Provides a compelling picture that
connects the perturbative domain of
QCD’s Green functions with the infrared

a prominent example is for the quark
propagator; soon to be a textbook result:

“Foundations of Nuclear & Particle Physics”

Arriving at a clear picture of how hadron masses emerge dynamically in a
universe with light quarks through DCSB

Detailed understanding of the Goldstone nature of the pion and its internal
structure

Performed realistic calculations of ground and excited state hadron wave
functions whose structure reflects that of QCD

illuminated the important quark-quark correlations inside baryons
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QCD’s Gap Equation
Most important DSE is QCD’s gap equation =⇒ dressed quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p)−1 = Z2

(
i /p+m0

)
+ Z1

∫
d4k

(2π)4
g2Dµν(p− k)

λa

2
γµ S(k) Γa,ν(p, k)

S(p) dressed quark propagator
Dµν(p− k) dressed gluon propagator
Γa,ν(p, k) dressed quark-gluon vertex
m0 bare current quark mass
Z1, Z2 vertex and quark wave function
renormalization constants

Gap equation is exact – yet deceptively
simply

sums a countable infinity of diagrams
impossible in perturbation theory
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Gluon’s Gap Equation
Gluon satisfies its own gap equation:

µ, aν, b

−1
=

µ, aν, b

−1
+

+

µ, aν, b
+

µ, aν, b
+

µ, aν, b

µ, aν, b

+
µ, aν, b

+
µ, aν, b

additional ingredients: ghost propagator; ghost-gluon vertex; 3-, 4-gluon vertices

In covariant gauge gluon propagator has
one dressing function

Dµν(q) =

(
δµν +

qµqν

q2

)
∆(q2) + ξ

qµqν

q4

usually choose Landau gauge ξ = 0; fixed
point of the RGEs

Gluons also possess a dynamically
generated mass
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Dynamically generated masses for quarks and gluons means that QCD
dynamically generates its own infrared cutoffs

A. C. Aguilar et al,
Phys. Rev. D81, 034003 (2010)
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Massive Gauge Bosons
[D. Binosi et al., Phys. Lett. B 742, 183 (2015)]

Careful analysis of the complex of
quark, gluon and ghost gap equations
yields the RGI function:

d̂(k2) =
αs(ζ)

k2 +m2
g(k

2, ζ)

Can identify a gluon mass function
with the infrared scales:
m2
g(0) = (0.46 GeV)2; αs(0) = 2.77 ' 0.9π

Role of gluons with wavelength larger
than 1/mg(0) are greatly suppressed

Hadron structure at low Bjorken-x is
dominated by gluons

features in this regime must reflect
infrared properties of gluon dressing
function; e.g. gluon saturation @ an EIC
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Truncations: A Persistent Challenge

α, Aβ, B

p p′

µ, a

q

= +

+

+ + +

+ + +

The quark-gluon vertex presents the biggest challenge and necessitates a
truncation

In general the quark-gluon vertex has the form

Γa,µgqq(p
′, p) =

λa

2

∑12

i=1
Λµi fi(p

′2, p2, q2) =
λa

2
[ΓµL(p′, p) + ΓµT (p′, p)]

Truncation scheme that must maintain symmetries of theory
we will define the truncation in Landau gauge (ξ = 0), so SU(3)c gauge
invariance becomes a moot point
in principle could use the Landau-Khalatnikov-Fradkin transformations (LKFT)
to tranform Green functions from one gauge to another
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Preserving Symmetries

−1
=

−1
+

q

p

p′

=
q

p

p′

+
q

p

p′

The truncation must preserve the global symmetries of QCD, as well as
exhibit DCSB and colour confinement

Confinement can be checked by investigation of the analytic structure of the
propagtors of coloured states

To guarantee that the consequences of DCSB are respected need to be
determine the properties of bound states

for relativistic two-body bound states these properties are given by the
Bethe-Salpeter equation
kernels of the gap and Bethe-Salpeter equations must be intimately related
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Ward–Takahashi identities

−1
=

−1
+

q

p

p′

=
q

p

p′

+
q

p

p′

Consider the vector and axial-vector Ward–Takahashi identities (WTIs)

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

qµ Γµ,i5 (p′, p) = S−1(p′) γ5 ti + ti γ5 S
−1(p) + 2mΓiπ(p′, p)

relates quark-photon vertex and the inhomogeneous axial-vector & pseudoscalar
vertices with quark propagator

Satisfing these WTIs will guarantee, for example, electromagnetic current
conservation and a robust realization of DCSB

Therefore feedback from experiment can help constrain the elements of QCD
within the framework provided by the DSEs
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Rainbow Ladder Truncation

−1
=

−1
+

S(p)−1 = Z2

(
i /p+m0

)
+ Z1

∫
d4k

(2π)4
g2Dµν(p− k)

λa

2
γµ S(k) Γa,ν(p, k)

A leading symmetry preserving truncation to the DSEs is rainbow-ladder:

1
4π g

2Dµν(p− k) Γν(p, k) −→ αeff(p− k)Dfree
µν (p− k) γν

Need model for αeff(k
2) – must agree with perturbative QCD for large k2

Maris–Tandy model is historically the most successful example [PRC 60, 055214 (1999)]

αeff(k
2) = πD

ω6 k4 e−k
2/ω2

+ 24π
25

(
1− e−k2/µ2

)
ln−1

[
e2− 1+

(
1 + k2/Λ2

QCD
)2]

µ = 1 GeV, ΛQCD = Λ
(4)

M̄S = 0.234 GeV, ωD = (0.72 GeV)
3

Correct LO perturbative limit is build in: αeff(k
2)

k2→∞−→ 12
25

π

ln[k2/Λ2
QCD]

one parameter model for QCDs infra-red behaviour
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QCD’s Quark Propagator

A. Holl, et al, Phys. Rev. C 71, 065204 (2005)
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Quark propagator: S(p) =
Z(p2)

i/p+M(p2)
=

1

i/pA(p2) +B(p2)

Dynamical mass generation, M ∝ 〈q̄q〉 ⇐⇒ 〈q̄q〉 6= 0 ⇐⇒ DCSB
Higgs mechanism is almost irrelevant for light quarks

DCSB generates 98% of the mass in the visible universe

In perturbative QCD: B(p2) = m
[
1− α

π ln
(
p2

m2

)
+ . . .

]
m→0→ 0

QCD is an innately non-perturbative theory! The only example in nature
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QCD’s Quark Propagator

S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)
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Solving the QCD Gap Equation

Use quark propagator: S−1(p, µ2) = i/pA(p2, µ2) +B(p2, µ2)

Rainbow ladder truncation:

g2

4π
Γν(p, k)→ αeff(k

2) γµ, Dµν(k)→ Dfree
µν (k)

Use off-shell subtraction scheme for renormalization:

S(p)−1
∣∣∣
p2=µ2

= i /p+m(µ2)

m(µ2) is the renormalized current quark mass: m(µ2) = m0(Λ2)
Zm(µ2,Λ2)

Gap equation becomes set of coupled integral eqs. for A(p2) & B(p2):

A(p2, µ2) = Z2(µ2,Λ2)A0(p2,Λ2) & B(p2, µ2) = Z2(µ2,Λ2)B0(p2,Λ2)

Then solve the two coupled equations by iteration

S(p, µ2)−1 = Z2(µ2,Λ2)S0(p) + 4
3 Z1(µ2,Λ2)

∫
g2Dµν(p− k) γµ S(k, µ2) Γν(p, k)
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Charting Interaction between light quarks
Formally, hadronic observables are related to
QCD’s Schwinger functions

E.g., the quark propagator is a Schwinger
function and the gap equation relates this to:

the gluon propagator: Dµν(k)

the quark-gluon vertex Γa,µgqq(p, p
′)

The quark propagator is the building block
of hadrons in the DSEs

The DSEs are therefore a tool that can relate QCD’s Schwinger Functions to
hadronic observables

Measurements of, for example, the hadron mass spectrum, elastic and
transition form factors, PDFs, etc must provide information on the
long-range interaction between light quarks and gluons

Interplay between DSEs & experiment provides a framework to extract
infrared behaviour of QCD’s Schwinger functions

Within DSE framework can map out infra-red properties of QCDs running
coupling αs(Q2) ⇐⇒ confinement
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The Simplest Truncation
The full machinery of the DSEs provides
a connection between QCD & experiment

there remains much to be explored, notably
baryon PDFs, TMDs & GPDs
however DSEs calculations are time &
resource intensive – useful to have
some physics intuition before embarking
upon DSE studies

To build intuition and understanding is it
good to explore hadron structure with a simplified quark-gluon interaction

Replace gluon propagator with a δ-function in configuration space:

g2Dµν(p− k)Γν(p, k) → 1
m2

g
gµν γ

ν

This contact interaction framework is basically equivalent to the
Nambu–Jona Lasinio (NJL) model

The NJL model is a proven and powerful tool with which to explore hadron
structure and guide experiment
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The Nambu–Jona-Lasinio Model

The Nambu–Jona-Lasinio (NJL) Model was invented in 1961 by Yoichiro
Nambu and Giovanni Jona-Lasinio while at The University of Chicago

was inspired by the BCS theory of superconductivity
was originally a theory of elementary nucleons
rediscovered in the 80s as an effective quark theory

It is a relativistic quantum field theory, that is relatively easy to work with,
and is very successful in the description of hadrons, nuclear matter, etc

Nambu won half the 2008 Nobel prize in physics in part for the NJL model:
“for the discovery of the mechanism of spontaneous broken symmetry in subatomic
physics” [Nobel Committee]
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Nambu–Jona-Lasinio model

Continuum QCD ➞
“integrate out gluons” 1

m2
g

Θ(Λ2−k2)

this is just a modern interpretation of the Nambu–Jona-Lasinio (NJL) model

model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry
breaking & quark confinement; elements can be QCD motivated via the DSEs

S. x. Qin et al., Phys. Rev. C 84, 042202 (2011)
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Proper-time regularization: ΛIR & ΛUV =⇒ Confinement

Quark propagator: [/p−m+ iε]−1 Þ Z(p2)[/p−M + iε]−1

wave function renormalization vanishes at quark mass-shell: Z(p2 = M2) = 0
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Constructing the Lagrangian

Z(k2)

k2

➞ G Θ(Λ2−k2)

In general the NJL Lagrangian has the form

L = ψ
(
i /∂ −m

)
ψ +

∑
α
Gα
(
ψ Γα ψ

)2
Γα represents a product of Dirac, colour and flavour matrices

What about LI? – effective theories should maintain symmetries of QCD

In chiral limit QCD Lagrangian has symmetries

SQCD = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ U(1)A ⊗ C ⊗ P ⊗ T

SU(Nf )A is broken dynamically – DCSB
U(1)A is broken in the anomalous mode – U(1) problem – massive η′

NJL interaction Lagrangian must respect the symmetries

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

in NJL SU(3)c will be considered a global gauge symmetry
U(1)A is often broken explicitly =⇒mη′ 6= 0
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NJL Symmetries

SNJL = SU(3)c ⊗ SU(Nf )V ⊗ SU(Nf )A ⊗ U(1)V ⊗ C ⊗ P ⊗ T

The NJL Lagrangian should be symmetric under the transformations

SU(Nf )V : ψ −→ e−i t·θV ψ ψ̄ −→ ψ̄ ei t·θV

SU(Nf )A : ψ −→ e−i γ5 t·θA ψ ψ̄ −→ ψ̄ e−i γ5 t·θA

U(1)V : ψ −→ e−i θ ψ ψ̄ −→ ψ̄ ei θ

U(1)A : ψ−→ e−i γ5 θ ψ ψ̄−→ ψ̄ e−i γ5 θ

Nambu and Jona-Lasinio chose the Lagrangian

L = ψ̄
(
i/∂ −m

)
ψ +Gπ

[(
ψ̄ψ
)2 − (ψ̄ γ5τ ψ

)2]
Can choose any combination of these 4−fermion interactions(
ψ̄ψ
)2
,

(
ψ̄ γ5 ψ

)2
,

(
ψ̄ γµ ψ

)2 (
ψ̄ γµγ5 ψ

)2
,

(
ψ̄ iσµν ψ

)2
,(

ψ̄ tψ
)2
,
(
ψ̄ γ5 tψ

)2
,
(
ψ̄ γµ tψ

)2
,
(
ψ̄ γµγ5 tψ

)2
,
(
ψ̄ iσµν tψ

)2
.
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NJL Lagrangian (Nf = 2)

The most general Nf = 2 NJL Lagrangian that respects the symmetries is

LI is U(1)A invariant if: Gπ = −Gη & GT = 0

ψ̄ψ ←→ σ ←→
(
JP , T

)
=
(
0+, 0

)
ψ̄ γ5τ ψ ←→ π ←→

(
JP , T

)
=
(
0−, 1

)
ψ̄ γµ ψ ←→ ω ←→

(
JP , T

)
=
(
1−, 0

)
ψ̄ γµτ ψ ←→ ρ ←→

(
JP , T

)
=
(
1−, 1

)
ψ̄ γµγ5 ψ ←→ f1, h1 ←→

(
JP , T

)
=
(
1+, 0

)
ψ̄ γµγ5τ ψ ←→ a1 ←→

(
JP , T

)
=
(
1+, 1

)
ψ̄τψ ←→ a0 ←→

(
JP , T

)
=
(
0+, 1

)
ψ̄ γ5 ψ ←→ η, η′ ←→

(
JP , T

)
=
(
0−, 0

)

L = ψ̄
(
i/∂ −m

)
ψ +Gπ

[(
ψ̄ψ
)2 − (ψ̄ γ5τ ψ)2]+Gω

(
ψ̄ γµ ψ

)2
+Gρ

[(
ψ̄ γµτ ψ

)2
+
(
ψ̄ γµγ5τ ψ

)2]
+Gh

(
ψ̄ γµγ5 ψ

)2
+Gη

[(
ψ̄ γ5 ψ

)2 − (ψ̄ τ ψ)2]+GT

[(
ψ̄ iσµνψ

)2 − (ψ̄ iσµντ ψ)2]
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NJL Lagrangian (Nf = 3)

The most general Nf = 2 NJL Lagrangian that respects the symmetries is

LI is U(1)A invariant if: Gπ = −Gη & GT = 0

The most general Nf = 3 NJL Lagrangian that respects the symmetries is

LI = Gπ
[
1
6

(
ψ̄ψ
)2

+
(
ψ̄ tψ

)2 − 1
6

(
ψ̄ γ5 ψ

)2 − (ψ̄ γ5 tψ)2]
−1

2
Gρ
[(
ψ̄ γµ tψ

)2
+
(
ψ̄ γµγ5 tψ

)2]− 1

2
Gω
(
ψ̄ γµ ψ

)2 − 1

2
Gf
(
ψ̄ γµγ5 ψ

)2
Enlarging the SU(Nf )V ⊗ SU(Nf )A chiral group from Nf = 2 to Nf = 3

reduces the number of coupling from six to four

The Nf = 3 Lagrangian is automatically U(1)A invariant
U(1)A is then often broken by the ’t Hooft term – a 6-quark interaction

L(6)
I = K

[
det
(
ψ̄(1 + γ5)ψ

)
+ det

(
ψ̄(1− γ5)ψ

)]

L = ψ̄
(
i/∂ −m

)
ψ +Gπ

[(
ψ̄ψ
)2 − (ψ̄ γ5τ ψ)2]+Gω

(
ψ̄ γµ ψ

)2
+Gρ

[(
ψ̄ γµτ ψ

)2
+
(
ψ̄ γµγ5τ ψ

)2]
+Gh

(
ψ̄ γµγ5 ψ

)2
+Gη

[(
ψ̄ γ5 ψ

)2 − (ψ̄ τ ψ)2]+GT

[(
ψ̄ iσµνψ

)2 − (ψ̄ iσµντ ψ)2]
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NJL Interaction Kernel
Using Wick’s theorem and the NJL Lagrangian there are 2 diagrams for the
interaction between a quark and an anti-quark

γ

δ

α

β
Direct

−

Time

δ α

γ βExchange

2iG
[
ΩiαβΩ

i

γδ − ΩiαδΩ
i

γβ

]

Using Fierz transformations can express each exchange term as a sum of
direct terms

The SU(2) NJL interaction kernel then takes the form

Kαβ,γδ = 2iGπ

[
(1)αβ (1)γδ − (γ5τ )αβ (γ5τ )γδ

]
− 2iGω (γµ)αβ (γµ)γδ

− 2iGρ

[
(γµτ )αβ (γµτ )γδ + (γµγ5τ )αβ (γµγ5τ )γδ

]
+ . . .

This kernel enters the NJL gap and meson Bethe-Salpeter equations
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Regularization Schemes

The NJL model is non-renormalizable =⇒ cannot remove regularization

regularization parameter(s) play a dynamical role

Popular choices are:

3-momentum cutoff: ~p 2 < Λ2

4-momentum cutoff p2
E < Λ2

Pauli-Villars

We will use the proper-time regularization scheme

1

Xn
=

1

(n− 1)!

∫ ∞
0

dτ τn−1 e−τ X → 1

(n− 1)!

∫ 1/Λ2
IR

1/Λ2
UV

dτ τn−1 e−τ X

only ΛUV is needed to render the theory finite

however, as we shall see, ΛIR plays a very important role; it prevents quarks
going on their mass shell and hence simulates quark confinement
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NJL Quark Propagator
Complete expression for the quark propagator cannot be obtained

need a truncation

Do not in include diagrams like:
would give a momentum dependent mass function

Include all diagrams of the form:

= + + + + · · ·
All these diagrams can be summed via an integral equation

−1
=

−1
+

The most general quark propagator has the form

S(p) =
1

/p−m− Σ(p)
=

Z(p2)

/p−M(p2)
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NJL Gap Equation

−1
=

−1
+

The NJL gap equation has the form

S−1(k) = S−1
0 (k)− Σ(k) = [/k −m]−

∑
j

∫
d4`

(2π)4
Tr
[
S(`) Ω

j
]

Ωj

The only piece of the interaction kernel that contributes is:

Kσ
αβ,γδ = 2iGπ (1)γδ (1)αβ

Solving this equation give a quark propagator of the form

S−1(k) = /k −M + iε

The constituent quark mass satisfies the equation

M = m+ 48iGπM

∫
d4`

(2π)4

1

`2 −M2 + iε
= m+M

3Gπ
π2

∫
dτ

e−τ M
2

τ2
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The True Ground State

M = m+M
3Gπ
π2

∫
dτ

e−τ M
2

τ2

For the case m = 0 the gap equation has two solutions:
trivial solution: M = 0 & non-trivial solution: M 6= 0

Which solution does nature choose, that is, which solution minimizes the
energy. Compare vacuum energy density, E , for each case

E(M)− E(M = 0) = − 3

4π2

∫
dτ

1

τ3

(
e−τM

2 − 1
)

+
M2

4Gπ

−0.002
0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

E
[G

eV
4
]

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

M [GeV]

Gπ = 5GeV−2

Gπ = Gπ,crit

Gπ = 20GeV−2

Gπ = 30GeV−2

For Gπ > Gπ,crit the lowest energy
solution has M 6= 0

Therefore for Gπ > Gπ,crit NJL has
DCSB

DCSB⇐⇒ generates mass from
nothing
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NJL & DSE gap equations
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NJL constituent mass is given by: M = m− 2Gπ
〈
ψ̄ψ
〉

Chiral condensate is defined by〈
ψ̄ψ
〉
≡ lim
x→y

Tr [−iS(x− y)] = −
∫

d4k

(2π)4
Tr [i S(k)]

Mass is generated via interaction with vacuum

Dynamically generated quark masses ⇐⇒ 〈ψψ〉 6= 0〈
ψ̄ψ
〉

=
〈
ūu+ d̄d

〉
is an order parameter for DSCB
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Confinement in NJL model

S(k) =

∫ ∞
0

dτ (/k +M) e−τ(k
2−M2) →

[
e−(k2−M2)/Λ2

UV −e−(k2−M2)/Λ2
IR

]
k2−M2︸ ︷︷ ︸
≡Z(k2)

[/k +M ]

In general the NJL model is not confining; quark propagator is simply

S(k) =
1

/k −M + iε
=

/k +M

k2 −M2 + iε

quark propagator has a pole =⇒ quarks are part of physical spectrum

However the proper-time scheme is unique

quark propagator does not have a pole: Z(k2)
k2→M2

= 1
Λ2

IR
− 1

Λ2
UV
6=∞

Are confinement and DCSB related?

NJL model is proof that DCSB can exist without confinement

however commonly believed cannot have dynamically generated confinement
without DCSB
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Summary
QCD and therefore Hadron Physics
is unique:

must confront a fundamental theory in
which the elementary degrees-of-freedom
are intangible (confined) and only
composites (hadrons) reach detectors

QCD will only be solved by deploying a
diverse array of experimental and
theoretical methods:

must define and solve the problems of confinement and its relationship with DCSB

These are two of the most important challenges in fundamental Science

The DSEs are an important tool with which to meet these challenges

the NJL model, while not sophisticated enough to directly address these issues
within QCD, has and will continue to provide critical guidance
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