Heavy Ion Physics Lecture 2: Accelerators and Detectors

HUGS 2015

Bolek Wyslouch

History of the relativistic heavy ion physics

- Figures of merit:
 - CM energy per colliding nucleon pair
 - Atomic number of the colliding nuclei
- Accelerators with O(1 GeV) per nucleons beams started to operate in the 1970s
 - Berkeley, Brookhaven in the US
 - GSI in Germany
 - CERN in Switzerland/France
 - Dubna in Russia
- Physics driven by continuous improvements in both accelerator and detector technology!

Accelerators in Relativistic Heavy Ion Physics

Accelerator	Place	HI-Periods	Max. Energy	Projectiles	Experiments
Bevalac	LBNL, Berkeley	1984 - 1993	< 2 <i>A</i> GeV	C, Ca, Nb, Ni, Au,	Plastic Ball, Streamer Chamber, EOS, DLS
Synchro- Phasotron	JINR, Dubna	1974 – 1985	> 100 <i>A</i> MeV		
AGS	BNL, Brookhaven	1986 - 1994	14.5/11.5 <i>A</i> GeV	Si, Au	E802,, E917
SPS	CERN, Geneva	1986 - 2002	200/158 <i>A</i> GeV	O, S, In, Pb	NA34, , WA80,
SIS	GSI, Darmstadt	1992 - today	2 <i>A</i> GeV	Kr, Au	FOPI, KAOS, HADES
RHIC	BNL, Brookhaven	2000 - today	$\sqrt{s_{NN}} = 200 \text{ GeV}$	Cu,Au	STAR, PHENIX, BRAHMS, PHOBOS
LHC	CERN, Geneva	2010 →	$\sqrt{s_{NN}} = 5.5 \text{ TeV}$	O, Ar, Pb	ALICE, CMS, ATLAS
FAIR	GSI, Darmstadt	?	30/45 <i>A</i> GeV	Multiple	
Nuklotron	JINR, Dubna	?	~5 <i>A</i> GeV		

Fixed Target vs. Colliding Beams

- Fixed target
 - CM energy limited by $E_{CM} = \sqrt{2(1GeV)E_{beam}}$ Best ever achieved was at CERN SPS with E_{beam} of about 160 GeV/nucleon ($E_{CM} \sim 20$ GeV per nucleon pair)
 - Very high beam intensity/luminosity
- Colliding beams
 - Much higher CM energy $E_{CM} = 2E_{beain}$ Expect $E_{CM} \sim 5500$ GeV per nucleon pair at LHC
 - Lower luminosity
- I will focus on results from colliding beam facilities:
 - RHIC at Brookhaven National Laboratory, since 2000
 - LHC at CERN, since 2010

The First Dedicated Heavy Ion Collider

Relativistic Heavy Ion Collider

Au+Au 7.7 - 200 GeV d+Au U+U Cu+Cu

Since 2000~

BRAHMS@RHIC

Specialized in:

- Quality PID spectra over a broad range of rapidity and p_T
- Special emphasis:

Mid rapidity spectrometer

BACK

D5

GASC

TOFW

TPC2

• Where do the baryons go?

100 cm

- How is directed energy transferred to the reaction products?
- Two magnetic dipole spectrometers in "classic" fixed-target configuration

PHOBOS

PHOBOS DETECTORS

Large acceptance multiplicity detector Small acceptance spectrometer with particle identification Collecting large quantity of minimum bias events

STAR

- An experiment with a challenge:
 - Track ~ 2000 charged particles in $|\eta|$ < 1

STAR Event

STAR Event

Data Taken June 25, 2000. Pictures from Level 3 online display.

PHENIX

- An experiment with something for everybody
- A complex apparatus to measure
 - Hadrons; Muons; Electrons; Photons

Executive summary:

- High resolution; High granularity

PHENIX Reality

PHENIX Single Event

The New Frontier

Large Hadron Collider

p+p 7-8 TeV Pb+Pb 2.76 TeV p+Pb 5.02 TeV

2015 and beyond: p+p 13-14 TeV Pb+Pb 5~5.5 TeV P+Pb ~8 TeV

Flags of CERN's Member States

LHC: ~10,000 users

Construction Budget: ~12 billion USD (~50% LHC, ~50% detectors)

20 European Member States and around 60 additional countries collaborate in our scientific projects.

Speed of the accelerated protons and lead ions

Formula 1

100 m/s

Lockheed SR-71 Blackbird

980 m/s

Protons at 4 TeV: lons at the same B field: Differ by 51 m/s

(1-3e-8)c (1-2e-7)c LHC ~c=300,000,000 m/s

Difference: ~4.6 mm after 1 turn!

Inside the beam pipe

Earth~ 1 atm

Moon ~ 10⁻¹⁴ atm

To accelerate protons to almost the speed of light, we need a vacuum similar to interplanetary space. The pressure in the beam-pipes of the LHC will be about 10 times lower than on the moon.

Superconducting Magnets

LHC ~ -271°C

<image>

Magnetic field: 8.4 Tesla (~200,000 times of the field from Earth)

With a temperature of around -271 degrees Celsius, or **1.9** degrees above absolute zero, the LHC is colder than interstellar space.

Lead lons at LHC

- A cloud of ions is
 bombarded by
 energetic electrons
 circulating in
 magnetic field
- Electrons are energized by circularly polarized microwaves at cyclotron frequency
- CERN/LHC uses isotopically pure
 ²⁰⁸Pb
- About 1300\$/gram

Lead Beams in LHC

• LHC is accelerating ions of ²⁰⁸Pb, fully ionized, charge +82

- Energy of 2.76 TeV/nucleon pair (82/208=0.4 times proton energy of 7 TeV)
- "Only" 7 10⁷ ions per bunch, much less than typical proton bunch of 10¹¹ Electrostatics!
- In 2010 LHC collided up to ~140 bunches per beam, about 1/40 of nominal luminosity, ~200 Hz of inelastic collisions
- In 2011 we got 20 times higher luminosity

CERN Accelerator Complex

Stripping all electrons

CERN Accelerator movie

ALICE Detector

ALICE Detector Elements

ATLAS Detector

ATLAS Detectors

CMS detector - construction (2000)

CMS design principles

- Use one single superconducting solenoid to provide uniform axial magnetic field
 - Largest coil that can be transported to CERN by road
 - Place tracking and calorimeters inside the coil
- Best possible electromagnetic calorimeter
 Use PbWO₄ crystals
- Best possible tracking system
 - Based completely on silicon sensors
- Hermetic calorimetry
- Large and redundant muon system
- Construct large pieces on the surface and then lower them underground for final assembly
- Affordable?? (cost ~500 million US\$)

"Boundary conditions"

- LHC was designed to find Higgs and to extend the high energy frontier.
- BUT, Geneva region is small!, accelerator had to fit between the city and the mountains
 - "small" radius-> large magnetic field -> relatively low energy of 14 TeV
 - Some of us still remember SSC accelerator in Texas: 80 km circumference, 40 TeV
- LHC answer: high luminosity, ~25 (or more!) collisions every 25 ns
- All sub-detectors, trigger and DAQ need to be FAST

CMS as a detector for heavy ions

- Much lower luminosity, collision frequency was ~4kHz compared 1 GHz for pp
- But the multiplicity is higher, corresponds to 200-300 pp collisions at the same time
- % of fired channels in some detectors is relatively high, e.g. strip tracker or calorimeters
 - Requires some adjustments to electronics and software
- Specially designed triggers
- Adjustments to data acquisition system

Particles in CMS

CMS Sub-detectors

- Starting from the interaction point and going outwards
- •
- Silicon Tracker
 - Pixels
 - Strips
- Electromagnetic Calorimeter (ECAL)
- Hadronic Calorimeter (HCAL)
- Solenoid Magnet

Muon Detectors

CMS Sub-detectors: Tracker

Tracker

Finely segmented silicon sensors (strips and pixels) enable charged particles to be tracked and their momenta to be measured. They also reveal the positions at which long-lived unstable particles decay.

CMS Sub-detectors: Tracker

- Largest silicon-sensor system ever made
 - 6m long, ~2.2m diameter, will operate at -15°C
 - More than 220m² of sensors (65M pixels and 10M strips)

Pixel ReadOut Chip

Pixel Analog Readout

BERYLLIUN

•On receiving a L1 trigger, the Token Bit Manager (TBM) initiates a sends "token bits" that instruct each ROC to send its hit data to the TBM

•The signal from the TBM is electrical and analog. It encodes the ROC #, row and column and charge deposit of each pixel hit

•The electrical signal from the TBM is converted to optical by the Analog-Optical Hybrid (AOH)

CMS Sub-detectors: Tracker

Assembling (left) and installation (below) of part of the Pixel detector

Tracker Sensor

Tracker detector

• Silicon pixel + Strip detector with optical analog readout

• Pixel :

- N+ in n sensors :
 - 100 μm x 150 μm
 - 52x80 pixel read by one ReadOut Chip (ROC)
- Barrel (Bpix):
 - 3 layers (56cm long) at r= 4.3,7.2, 11.0 cm
 - → 48M pixels, 11520 ROCs, 1120 RO links
- Endcap (FPix) :
 - 4 disks inner (outer) radius=6 (15) cm at z= ±34.5, ±46.5 cm
 - → 18M pixels, 4320 ROCs, 192 RO links

• Strip :

- 9.3M strips in 15148 modules :
 - Inner: 4 layers barrel (TIB), 3 disks (TID) cap
 - Outer:6 layers barrel (TOB), 9 disks (TEC)cap
- 200m² silicon sensor (p-in-n) :
 - Pitch from 80 to 205 μm
 - + 20<r<55 cm thin (d=320 $\mu m)$
 - r>55 cm thick (d=500 μm)
- Generally measure rΦ direction
- Some radii ('Stereo'): additional 2nd modules rotated by 100 mrad
 - → measurements for η (track)

CMS sub-detectors: ECAL

Electromagnetic Calorimeter

Nearly 80 000 crystals of lead tungstate (PbWO₄) are used to measure precisely the energies of electrons and photons. A 'preshower' detector, based on silicon sensors, helps particle identification in the endcaps.

Calorimeters: Lead Tungstate Crystal

One dense substance – PbWO₄ - produces the shower and scintillation light

Lead tungstate crystals (PbWO₄)

P.7 RN		•
arrel crystal, ipered 4 types	Endcap crystal, tapered 1 type	
Reasons for cho	pice:	•

- Homogeneous medium
- Fast light emission
- Short radiation length
- Small Molière radius
- **Emission peak**

B ta

3

- 8.3 g/cm³
- ~ 80% in 25 ns

- $X_0 = 0.89$ cm
- $R_{M} = 2.20 \text{ cm}$

420 nm

Caveats:

- LY temperature dependence $\sim -2.2\%/^{\circ}$ C Need to stabilise to few 0.01^oC
- Formation/decay of colour centres under irradiation altering crystal transparency Need precise monitoring system
- Low light yield Need photodetectors with gain in magnetic field
- Light yield spread between crystals ~ 10%

Need intercalibration

Photodetectors

Barrel: Avalanche photo-diodes (APD, Hamamatsu)

- Two 5x5 mm² APDs/crystal, ~ 4.5 p.e./MeV
- Gain 50
- QE ~ 75% at 420 nm
- Temperature dependence $\Delta G/\Delta T = -2.4\%/°C$
- High-Voltage dependence $\Delta G/\Delta V = 3.1\%/V$ Need to stabilize T at few 0.01°C and HV at ~10mV

Endcaps: Vacuum photo-triodes (VPT, RIE)

- More radiation resistant than Si diodes
- UV glass window
- Active area ~ 280 mm²/crystal, ~ 4.5 p.e./MeV
- Gain 8 -10 (B=4T)
- Q.E. ~ 20% at 420 nm
- Gain spread among VPTs ~ 25%
 Need intercalibration

CMS Sub-detectors: ECAL

CMS Sub-detectors: HCAL

Hadron Calorimeter

Layers of dense material (brass or steel) interleaved with plastic scintillators or quartz fibres allow the determination of the energy of hadrons, that is, particles such as protons, neutrons, pions and kaons.

HCAL Structure

HB/HE/HO

HF

Scintillator Tile

Quartz Fiber

Brass

Steel

Diode (HPD)

PMT

- 4	_
4	
- T	

2592/2592/2160

1728

CMS Sub-detectors: HCAL

Weapons to ploughshares: Brass for HCAL recuperated from Russian warships!

CMS Sub-detectors: HCAL

CMS Solenoid

Superconducting Solenoid

Passing 20 000 amperes through a 13 m long, 6 m diameter coil of niobium-titanium superconductor, cooled to -270°C, produces a magnetic field of 4 teslas (about 100 000 times stronger than that of the Earth). This field bends the trajectories of charged particles, allowing their separation and momenta measurements.

CMS Solenoid

Magnet cable

- B-field needs to be uniform and large (few teslas)
- Use superconductors

Aluminium alloy mechanical stabilizer

CMS uses approx: 1 million km of NbTi filaments!

CMS Solenoid

Coil is constructed vertically but needs to be horizontal!

CMS sub-detectors: Muon Chambers

Muon Detectors

To identify muons (essentially heavy electrons) and measure their momenta, CMS uses three types of detector: drift tubes, cathode strip chambers and resistive plate chambers.

Muon system

Barrel: 5 Wheels Endcap: 4 Disks per side

Total Weight: 14,500 tons Overall diameter: 14.60 m Overall length: 21.60 m Magnetic Field: 3.8 T 3 different technologies of gaseous detectors

Drift Tube (DT) in the barrel ($|\eta| < 1.2$) Cathode Strip Chambers (CSC) in the endcaps (0.9 < $|\eta| < 2.4$) Resistive Plate Chambers (RPC) both in barrel and endcaps (up to $|\eta|=1.6$)

All detectors used both in triggering and reconstruction

Drift Tubes

CMS sub-detectors: Muon Chambers

- Position measurement
 - Drift Tubes (DT) in barrel
 - Cathode Strip Chambers (CSC) in endcaps
- Trigger
 - Resistive Plate Chambers (RPCs) in barrel and endcaps

Muon detectors

Cathode Strip Chambers

Tracking and triggering in the endcaps. CSCs used due to higher B field and rate

MWPC chambers with cathode strip readout

- 6 layers per chamber
 - 9.5 mm gap, Ar/CO₂/CF₄ (40/50/10)%
- Bending coordinate (Φ) measured by centroid on strips
 - Strip pitch 8.4-16 mm
- Fast response from wire group (r coordinate) for BX identification
- Design resolution
 - ~150 μ m/chamber

- 75 μ m for the innermost chamber that operate in a critical region (less spaced, tilted wires; smaller strips; smaller gap)

Resistive Plate Chambers

- Double-gap in avalanche mode to cope with hit rates up to ~1KHz/cm²
- C₂H₂F₄/iso-C₄H₁₀/SF₆ (96.2/3.5/0.3)%; closed loop

• Strips measure bending coordinate (Φ ~1 cm resolution)

Fast response; very good timing resolution (~2ns)

BARREL 480 chambers (72 per wheel) 5 wheels / 12 sectors / 6 stations Readout channels > 50k

ENDCAPS 432 chambers (72 per Disk) 6 Disks / 2 rings / 36 stations Readout channels > 40k

Muon reconstruction in CMS

Muon system only

Muon reconstructed independently both in Tracker and in muon system

 Inner tracker dominates resolution up to 200 GeV/c due to multiple scattering in the iron Above 200 GeV/c, improvement from combined muon-tracker fit **Resolution measured by comparing** bottom and top leg of the cosmic track

Global Muon from combined fit **StandAlone** Muon track sigma (q/pT rel. resolution) Stand-Alone: Data 1 MC (CRAFT alignment) MC (ideal alignment) 101

Muon system only

LHC startup (2008)

Make your homepage beautiful with art by leading designers

Advertising Programs - Business Solutions - About Google

©2008 - Privacy

Google search LHC Black Hole Search term

LHC startup (2008)

Make your homepage beautiful with art by leading designers

Advertising Programs - Business Solutions - About Google

©2008 - Privacy

LHC magnet quench... Leaking 2 tones of liquid helium

Finally: LHC Startup and CMS center (2010)

First CMS paper (2010)

CMS PAPER QCD-09-010

CMS Paper

2010/02/08

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \sqrt{s} = 0.9 and 2.36 TeV

The CMS Collaboration*

Abstract

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at $\sqrt{s} = 0.9$ and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 ± 0.01 (stat.) \pm 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 \pm 0.01 (stat.) \pm 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, $dN_{ch}/d\eta|_{[\eta]_{cos}}$, are 3.48 \pm 0.02 (stat.) \pm 0.13 (syst.) and 4.47 ± 0.04 (stat.) \pm 0.16 (syst.), despectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in p1 and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

First physics paper! 18 pages

First CMS paper (2010)

CMS PAPER QCD-09-010

CMS Paper

2010/02/08

Transverse-momentum and pseudorapidity distributions of charged hadrons in pp collisions at \sqrt{s} = 0.9 and 2.36 TeV

The CMS Collaboration*

Abstract

Measurements of inclusive charged-hadron transverse-momentum and pseudorapidity distributions are presented for proton-proton collisions at $\sqrt{s}=0.9$ and 2.36 TeV. The data were collected with the CMS detector during the LHC commissioning in December 2009. For non-single-diffractive interactions, the average charged-hadron transverse momentum is measured to be 0.46 ± 0.01 (stat) \pm 0.01 (syst.) GeV/c at 0.9 TeV and 0.50 ± 0.01 (stat.) \pm 0.01 (syst.) GeV/c at 2.36 TeV, for pseudorapidities between -2.4 and +2.4. At these energies, the measured pseudorapidity densities in the central region, $dN_{\rm ch}/d\eta|_{\rm H}|_{\rm coff}$, are 3.48 \pm 0.02 (stat.) \pm 0.13 (syst.) and 4.47 ± 0.04 (stat.) \pm 0.16 (syst.), respectively. The results at 0.9 TeV are in agreement with previous measurements and confirm the expectation of near equal hadron production in pf and pp collisions. The results at 2.36 TeV represent the highest-energy measurements at a particle collider to date.

First physics paper! 18 pages

100 pages of comments from 4000 collaborators