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History of the relativistic heavy ion physics 

•  Figures of merit:  
–  CM energy per colliding nucleon pair 
–  Atomic number of the colliding nuclei 

•  Accelerators with O(1 GeV) per nucleons beams 
started to operate in the 1970s 
–  Berkeley, Brookhaven in the US 
–  GSI in Germany 
–  CERN in Switzerland/France 
–  Dubna in Russia 

•  Physics driven by continuous improvements in 
both accelerator and detector technology! 
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Accelerators in Relativistic Heavy Ion Physics 

Accelerator Place HI-Periods Max. Energy Projectiles Experiments 

Bevalac LBNL, Berkeley 1984 - 1993 < 2 AGeV C, Ca, Nb, 
Ni, Au, ... 

Plastic Ball, 
Streamer Chamber, 

EOS, DLS 

Synchro-
Phasotron JINR, Dubna 1974 - 1985 > 100 AMeV 

AGS BNL, 
Brookhaven 1986 - 1994 14.5/11.5 

AGeV Si, Au E802, ..., E917 

SPS CERN, Geneva 1986 - 2002 200/158 AGeV O, S, In, 
Pb NA34,... , WA80,... 

SIS GSI, Darmstadt 1992 - today 2 AGeV Kr, Au FOPI, KAOS, HADES 

RHIC BNL, 
Brookhaven 2000 – today √sNN = 200 GeV Cu,Au STAR, PHENIX, 

BRAHMS, PHOBOS 

LHC CERN, Geneva 2010 → √sNN = 5.5 TeV O, Ar, Pb ALICE, CMS, ATLAS 

FAIR GSI, Darmstadt ? 30/45 AGeV Multiple 

Nuklotron JINR, Dubna ? ~5 AGeV 



Fixed Target vs. Colliding Beams 

•  Fixed target 
–  CM energy limited by                            ,    . Best ever 

achieved was at CERN SPS with Ebeam of about 160 
GeV/nucleon (ECM~ 20 GeV per nucleon pair) 

–  Very high beam intensity/luminosity 
•  Colliding beams 

–  Much higher CM energy                      . Expect ECM~ 
5500 GeV per nucleon pair at LHC 

–  Lower luminosity 
•  I will focus on results from colliding beam facilities:  

–  RHIC at Brookhaven National Laboratory, since 2000 
–  LHC at CERN, since 2010 
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!!ECM = 2(1GeV )Ebeam

!!ECM =2Ebeam



The First Dedicated Heavy Ion Collider  

PHOBOS BRAHM
S 

PHENIX STAR 

Relativistic Heavy Ion Collider 

RHIC 

Au+Au  7.7 - 200 GeV 
d+Au 
U+U 
Cu+Cu 
… 

3.8 km circumference 

Since 2000~ 
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Stony Brook 
University 
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BRAHMS@RHIC 
Specialized in: 

–  Quality PID spectra over a broad range 
of rapidity and pT  

–  Special emphasis: 
•  Where do the baryons go? 
•  How is directed energy transferred to the 

reaction products? 

–  Two magnetic dipole spectrometers in 
“classic” fixed-target configuration 



PHOBOS 

Large acceptance 
multiplicity detector 
Small acceptance 
spectrometer with 
particle identification 
Collecting large 
quantity of minimum 
bias events 
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STAR 
•  An experiment with a challenge: 

–  Track ~ 2000 charged particles in |η| < 1 
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STAR Event 
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STAR Event 

Data Taken June 25, 2000.
Pictures from Level 3 online display.



PHENIX 

•  An experiment with something for everybody 
•  A complex apparatus  to measure 

–  Hadrons; Muons; Electrons; Photons 

Executive summary: 
–  High resolution; High granularity 



PHENIX Reality 
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PHENIX Single Event 
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The New Frontier 

Large Hadron Collider 

LHC 

p+p 7-8 TeV 
Pb+Pb 2.76 TeV 
p+Pb 5.02 TeV 
 
 
2015 and beyond: 
p+p 13-14 TeV  
Pb+Pb 5~5.5 TeV 
P+Pb ~8 TeV 
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Lake Geneva 

27 km circumference 

 CMS 

ATLAS 

LHCb 

ALICE 

France 

Switzerland 

RHIC 
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Methodology 

20 European Member States and around 60 additional countries collaborate 
in our scientific projects. 

Flags of CERN’s Member States 

Construction of the Large Hadron Collider and Experiments 

Construction Budget: ~12 billion USD (~50% LHC, ~50% detectors) 

LHC: ~10,000 users 
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Methodology 

100 m/s 

LHC 
~c=300,000,000 m/s 

Formula 1 

980 m/s 

Lockheed SR-71 Blackbird 
 

Speed of the accelerated protons and lead ions 

Protons at 4 TeV:     (1-3e-8)c 
Ions at the same B field:    (1-2e-7)c 
Differ by 51 m/s Difference: ~4.6 mm after 1 turn! 



… 
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Methodology 

To accelerate protons to almost the speed of light, we need 
a vacuum similar to interplanetary space.  The pressure in 
the beam-pipes of the LHC will be about 10 times lower 
than on the moon. 

Inside the beam pipe 

LHC ~ 10-15 atm Earth~ 1 atm 

Moon ~ 10-14 atm 

Like pumping down a cathedral… 



Superconducting Magnets 
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Methodology 

Magnetic field: 8.4 Tesla  (~200,000 times of the field from Earth) 
With a temperature of around -271 degrees Celsius, or 1.9 degrees above 
absolute zero, the LHC is colder than interstellar space. 

Neptune ~ -218oC 

LHC ~ -271oC 

Interstellar space  
~ -263oC 



Lead Ions at LHC 

•  A cloud of ions is 
bombarded by 
energetic electrons 
circulating in 
magnetic field 

•  Electrons are 
energized by 
circularly polarized 
microwaves at 
cyclotron frequency 

•  CERN/LHC uses 
isotopically pure 
208Pb 

•  About 1300$/gram 
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Lead Beams in LHC 

•  LHC is accelerating ions of 208Pb, fully ionized, charge +82 

 
•  Energy of 2.76 TeV/nucleon pair (82/208=0.4 times proton 

energy of 7 TeV) 
•  “Only” 7 107 ions per bunch, much less than typical proton 

bunch of 1011 Electrostatics! 

•  In 2010 LHC collided up to ~140 bunches per beam, about 1/40 
of nominal luminosity, ~200 Hz of inelastic collisions 

•  In 2011 we got 20 times higher luminosity 

ECR 
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CERN Accelerator Complex	

Ions 



Stripping all electrons 

Electron cloud 
foil 

Electric field 
Accelerator 

Pb Pb+92 

1.38 TeV per nucleon 

Pb+92 

Each ion carry 1.38 TeV x 208 ~ 50 µJ  

Each nucleon carry 
~ Kinematic energy of 
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CERN Accelerator movie 
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ALICE Detector 
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ALICE Detector Elements 
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ATLAS Detector 
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ATLAS Detectors 
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CMS detector - construction (2000) 
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Cessy, France  



CMS design principles 

•  Use one single superconducting solenoid to provide 
uniform axial magnetic field 
–  Largest coil that can be transported to CERN by road 
–  Place tracking and calorimeters inside the coil 

•  Best possible electromagnetic calorimeter 
–  Use PbWO4 crystals 

•  Best possible tracking system 
–  Based completely on silicon sensors 

•  Hermetic calorimetry 
•  Large and redundant muon system 
•  Construct large pieces on the surface and then lower 

them underground for final assembly 
•  Affordable?? (cost ~500 million US$)  
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“Boundary conditions” 

•  LHC was designed to find Higgs and to extend the 
high energy frontier. 

•  BUT, Geneva region is small!, accelerator had to fit 
between the city and the mountains 
–  “small” radius-> large magnetic field -> relatively low 

energy of 14 TeV 
–  Some of us still remember SSC accelerator in Texas: 80 

km circumference, 40 TeV 
•  LHC answer: high luminosity, ~25 (or more!) 

collisions every 25 ns 
•  All sub-detectors, trigger and DAQ need to be FAST 
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CMS as a detector for heavy ions 

•  Much lower luminosity, collision frequency was 
~4kHz compared 1 GHz for pp 

•  But the multiplicity is higher, corresponds to 
200-300 pp collisions at the same time 

•  % of fired channels in some detectors is 
relatively high, e.g. strip tracker or calorimeters 
–  Requires some adjustments to electronics and 

software 
•  Specially designed triggers 
•  Adjustments to data acquisition system 
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Particles in CMS 
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CMS Sub-detectors 

•  Starting from the interaction point and going outwards  
•    
•  Silicon Tracker 

–   Pixels 
–   Strips 

•   Electromagnetic Calorimeter (ECAL) 
•   Hadronic Calorimeter (HCAL) 
•   Solenoid Magnet 

•   Muon Detectors 
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CMS Sub-detectors: Tracker 
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CMS Sub-detectors: Tracker 
•  Largest silicon-sensor system ever made 

–  6m long, ~2.2m diameter, will operate at -15oC 
–  More than 220m2 of sensors (65M pixels and 10M strips) 
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Pixel ReadOut Chip 
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• ReadOut Chip (ROC) bump bonded 
sensor pixels. 

• 52 × 80 = 4160 pixels per ROC 
• 15,840 ROCs 
• 66 million pixels 

• Automatic zero-suppression 

• Each pixel has a programmable 
threshold 



Pixel Analog Readout 

37 

• On receiving a L1 trigger, the Token Bit Manager 
(TBM) initiates a sends “token bits” that instruct each 
ROC to send its hit data to the TBM 

• The signal from the TBM is electrical and analog. It 
encodes the ROC #, row and column and charge 
deposit of each pixel hit 

• The electrical signal from the TBM is converted to 
optical by the Analog-Optical Hybrid (AOH) 



CMS Sub-detectors: Tracker 

Assembling (left) and installation 
(below) of part of the Pixel 
detector 
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Tracker Sensor 
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Tracker detector 
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CMS sub-detectors: ECAL 
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Calorimeters: Lead Tungstate Crystal 

•  One dense substance – PbWO4 - produces the 
shower and scintillation light 

22cm 

Vacuum phototriode 
For light detection 
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Lead tungstate crystals (PbWO4) 
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Reasons for choice: 
 

•  Homogeneous medium      8.3 g/cm3 
•  Fast light emission            ~ 80% in 25 ns 
•  Short radiation length        X0 = 0.89 cm 
•  Small Molière radius         RM = 2.20 cm 
•  Emission peak                 420 nm 

Caveats: 
 

•  LY temperature dependence 
~-2.2%/OC Need to stabilise to few 
0.01OC 

•  Formation/decay of colour centres 
under irradiation altering crystal 
transparency 
Need precise monitoring system 

•  Low light yield                    
Need photodetectors with gain in 
magnetic field 

•  Light yield spread between crystals 
~ 10%  

         Need intercalibration 

Barrel crystal, 
tapered 
34 types 

Endcap crystal, 
tapered 
1 type 



Photodetectors 

Barrel:  Avalanche photo-diodes (APD, 
Hamamatsu) 

•  Two 5x5 mm2 APDs/crystal, ~ 4.5 p.e./MeV 
•  Gain 50 
•  QE ~ 75% at 420 nm 
•  Temperature dependence ΔG/ΔT = -2.4%/oC  
•  High-Voltage dependence ΔG/ΔV = 3.1%/V 

            Need to stabilize T at few 0.01oC and HV at ~10mV 
 
Endcaps: Vacuum photo-triodes (VPT, RIE) 
•  More radiation resistant than Si diodes 
•  UV glass window 
•  Active area ~ 280 mm2/crystal, ~ 4.5 p.e./MeV 
•  Gain 8 -10 (B=4T) 
•  Q.E. ~ 20% at 420 nm 
•  Gain spread among VPTs ~ 25%  
   Need intercalibration 
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CMS Sub-detectors: ECAL 

•  45 



CMS Sub-detectors: HCAL 
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HCAL Structure 
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CMS Sub-detectors: HCAL 
Weapons to ploughshares: Brass for HCAL recuperated from Russian warships! 
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CMS Sub-detectors: HCAL 

Installed Endcap HCAL 
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CMS Solenoid 
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CMS Solenoid 
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Magnet cable 

•  B-field needs to be  
uniform and large  
(few teslas) 

•  Use superconductors 

Superconducting 
cable - NbTi 

Ultra-pure Aluminium -  
magnetic stabilizer 

Aluminium alloy -  
mechanical stabilizer 

CMS uses approx: 1 million km of NbTi filaments! 
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CMS Solenoid 

Coil is constructed 
vertically but needs to be 
horizontal! 
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CMS sub-detectors: Muon Chambers 
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Muon system 
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Drift Tubes 
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CMS sub-detectors: Muon Chambers 
•  Position measurement 

–  Drift Tubes (DT) in barrel 
–  Cathode Strip Chambers (CSC) in endcaps 

•  Trigger 
–  Resistive Plate Chambers (RPCs) in barrel and endcaps 

Muon detectors 
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Cathode Strip Chambers 
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Resistive Plate Chambers 
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Muon reconstruction in CMS 
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LHC startup (2008) 

Google search 
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LHC startup (2008) 

Google search 

LHC magnet quench… 
Leaking 2 tones of liquid helium 
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Finally: LHC Startup and CMS center (2010) 
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First CMS paper (2010) 

First physics paper! 
18 pages 
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First CMS paper (2010) 

First physics paper! 
18 pages 

100 pages of comments 
from 4000 collaborators 


