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The Pion – Nature’s strong messenger
Hideki Yukawa in 1935 postulated a strongly
interacting particle of mass ∼ 100 MeV

Yukawa called this particle a “meson”

Cecil Powell in 1947 discovered the π-meson
from cosmic ray tracks in a photographic
emulsion – a technique Cecil developed

Cavendish Lab had said method is incapable of
“reliable and reproducible precision measurements”

The measured pion mass was: 130− 150 MeV

Both Yukawa & Powell received Nobel Prize – in
1949 and 1950 respectively

Discovery of pion was beginning of particle
physics; before long there was the particle zoo

Nuclear Pion Capture
[Nature 160 (1947) 486-492]

π
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The Pion in QCD
Today the pion is understood as both a bound state of a
dressed-quark and a dressed-antiquark in QFT and the
Goldstone mode associated with DCSB in QCD

This dichotomous nature has numerous ramifications, e.g.:

mρ/2 ∼MN/3 ∼ 350 MeV however mπ/2 ' 0.2× 350 MeV

The pion is unusually light, the key is dynamical chiral symmetry breaking

The pion – π+, π0, π− – is stable under the strong interaction, however does
decay via the weak interaction: τπ± ' 10−8s

Pion properties are therefore difficult to measure but there have been
numerous successes:

masses; decay constants and rates; electromagnetic form factor and parton
distribution function

Critical need for modern theory to examine the structure of the pion
the Dyson-Schwinger equations are the ideal tool
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QCD’s Dyson-Schwinger Equations
The equations of motion of QCD⇐⇒ QCD’s Dyson–Schwinger equations

an infinite tower of coupled integral equations
tractability =⇒ must implement a symmetry preserving truncation

The most important DSE is QCD’s gap equation =⇒ quark propagator

−1
=

−1
+

ingredients – dressed gluon propagator & dressed quark-gluon vertex

S(p) =
Z(p2)

i/p+M(p2)

S(p) has correct perturbative limit

mass function, M(p2), exhibits
dynamical mass generation

complex conjugate poles
no real mass shell =⇒ confinement

[M. S. Bhagwat et al., Phys. Rev. C 68, 015203 (2003)]

table of contents HUGS 2015 4 / 25



Pion Elastic Form Factor

ℓ

q

k

k′

p
π

p′

π

θ

〈Jµπ 〉 = (p′µ + pµ)Fπ(Q2)

Form factors parametrize the interaction of the
electromagnetic current with a hadron

the pion form factor furnishes information on
the distribution of charge inside the pion

The interaction of the EM current with a
pion has the form:

In the impulse approximation the pion form factor is given by the (triangle)
diagram:

Γ Γ

Γ = Γ

Ingredients:

dressed quark propagators
homogeneous Bethe-Salpeter vertices
dressed quark-photon vertex

Measurement and computation of the
pion form factor will shed light on
DCSB in QCD
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Bethe-Salpeter Equation
In QFT physical states appear as poles in
n-point Green Functions

That is, the full q̄q scattering matrix or
t-matrix, contains poles for all q̄q
bound states, that is, the physical mesons

The q̄q t-matrix is given by the
Bethe-Salpeter equation (BSE):

T = K + T K

In principle the kernel, K, contains all possible 2PI diagrams

K = + + . . . NJL
=⇒

The BSE is compact and correct – its solution in a particular channel gives
the two-body (meson) propagator
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Bethe-Salpeter Vertex Functions

T = K + T K =⇒ Γ = Γ K

Near a bound state pole of mass m a two-body T -matrix behaves as

T (p, k)→ iΓ(p, k) Γ̄(p, k)

p2 −m2
where p = p1 + p2, k = p1 − p2

Γ(p, k) is the homogeneous Bethe-Salpeter vertex & describes relative
motion of the quark and anti-quark while they form the bound state
Pion BSE vertex has the general form

Γπ(p, k) = γ5

[
Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)

]
the dominant amplitude is Eπ(p, k), Fπ(p, k) becomes important for large Q2

Bethe-Salpeter vertex needed for calculations e.g. fπ or Fπ(Q2)

i fπ p
µ δij =

∫
d4k

(2π)4
Tr
[

1
2 γ

µγ5τj S(k) Γiπ(p, k)S(k − p)
] µα α′

β β′q q
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NJL BSE for the Pion
NJL BSE for the pion: Kπ = −2iGπ (γ5τ )αβ(γ5τ )λε

T (q) = K +

∫
d4k

(2π)4
KS(q + k)S(k) T (q)

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

Solving for the t-matrix and expanding about the pole:

T = γ5τi
−2iGπ

1 + 2Gπ Ππ(q2)
γ5τi →

i Zπ
q2 −m2

π

(γ5τi)(γ5τi) =⇒ Γπ =
√
Zπ γ5τi

Zπ is effective pion-quark coupling constant & Γπ the pion BS vertex

The pion mass is then given by – 1 + 2Gπ Ππ(q2 = m2
π) = 0 – where

Ππ

(
q2
)
δij = 3i

∫
d4k

(2π)4
Tr [γ5 τi S(k) γ5 τj S(k + q)]

this result is straightforward to obtain
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The Pion as a Goldstone Boson
Is the pion a Goldstone boson? NJL gap equation gives:

Ππ(q2) =
m

2GπM
− 1

2Gπ
− q2 I(q2)

Pole condition – 1 + 2Gπ Ππ(q2 = m2
π) = 0 – implies

m2
π =

m

2GπM I(m2
π)

Therefore as demanded by chiral symmetry we have: m2
π ∝ m (GMOR)

also in the chiral limit – m→ 0 (M 6= 0) – pion is massless

The NJL model also satisfies all another relations associated with chiral
symmetry; for example

fπ gπqq = M gAqq Goldberger–Treiman (GT) relation

f2
πm

2
π = 1

2 (mu +md)
〈
ūu+ d̄d

〉
Gell-Mann–Oakes–Renner (GMOR)
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Chiral Partners
IF chiral symmetry was NOT dynamically broken
in nature expect mass degenerate chiral partners;
e.g. mσ ' mπ & ma1 ' mρ

The ρ and a1 are the lowest lying vector (JP = 1−)
and axial-vector (JP = 1+) q̄q bound states:
m

exp’t
ρ ' 770 MeV & m

exp’t
a1 ' 1260 MeV

The associated NJL BSE pole conditions read:

1 + 2Gρ Πρ(q
2 = m2

ρ) = 0 & 1 + 2Gρ Πa1(q2 = m2
a1) = 0

where Πa1(q2) = M2 I(q2) + Πρ(q
2)

If m = 0 and there is NO DCSB (M = 0) would have: mρ = ma1

In nature and NJL, DCSB splits chiral partner masses

NJL gives: mρ ≡ 770 MeV & ma1 ' 1098 MeV

agrees with the Weinberg relation: ma1 '
√

2mρ; [m2
σ ' m2

π + 4M2]
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Consequences of Running Quark Mass

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)] [L. X. Gutierrez-Guerrero el al., Phys. Rev. C81, 065202 (2010)]

Full DSE results uses the pion BSE vertex:

Γπ(p, k) = γ5

[
Eπ(p, k) + /pFπ(p, k) + /k k · pG(p, k) + σµνkµpν H(p, k)

]
In gap equation use simple kernel⇐⇒ NJL model with π − a1 mixing

g2Dµν(p− k)Γν(p, k) → 1
m2

G
gµν γ

ν =⇒ Γπ(p, k) = γ5

[
Eπ + /pFπ

]
quark no longer has a running mass

Nature of interaction can have observable consequences for Q2 > 0
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Measuring Pion Form Factor
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[G. M. Huber et al. [Jefferson Lab Collaboration], Phys. Rev. C 78, 045203 (2008)]

Sullivan Process

At low Q2 pion form factor is measured by scattering a pion from the
electron cloud of an atom [t ≡ p2]

small mass of electron limits this to Q2 < 0.5 GeV2

Higher Q2 experiments have been performed at Jefferson Lab where a
virtual photon scatters from a virtual pion that is part of the nucleon

Initial pion is off its mass shell – p2 6 0 – on mass shell p2 = m2
π

need to extrapolate to the pion pole p2 = m2
π
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Light-Front Wave Functions
In equal-time quantization a hadron wave
function is a frame dependent concept

boost operators are dynamical, that is, they
are interaction dependent

In high energy scattering experiments
particles move at near speed of light

natural to quantize a theory at equal
light-front time: τ = (t+ z)/

√
2

Light-front quantization =⇒ light-front WFs; many remarkable properties:
frame-independent; probability interpretation – as close as QFT gets to QM
boosts are kinematical – not dynamical

Parton distribution amplitudes (PDAs) are (almost) observables & are
related to light-front wave functions

ϕ(x) =

∫
d2~k⊥ ψ(x,~k⊥)
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Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

P
D
A

P
D
A

P
D
A

P
D
A

GPDs

P
D
A

GPDs

PDAs enter numerous hard exclusive scattering processes

Q2 Fπ(Q2)→ 16π f2
π αs(Q

2) Q2 Fγ∗γπ(Q2)→ 2 fπ

table of contents HUGS 2015 14 / 25



Pion’s Parton Distribution Amplitude
pion’s PDA – ϕπ(x): is a probability amplitude that describes the momentum
distribution of a quark and antiquark in the bound-state’s valence Fock state

it’s a function of the light-cone momentum fraction x = k+

p+ and the scale Q2

The pion’s PDA is defined by

fπ ϕπ(x) = Z2

∫
d4k

(2π)2
δ
(
k+ − x p+

)
Tr
[
γ+γ5 S(k) Γπ(k, p)S(k − p)

]
S(k) Γπ(k, p)S(k − p) is the pion’s Bethe-Salpeter wave function

in the non-relativistic limit it corresponds to the Schrodinger wave function

ϕπ(x): is the axial-vector projection of the pion’s Bethe-Salpeter wave
function onto the light-front [at twist-2 also pseudoscalar projection]

Pion PDA is an essentially nonperturbative quantity whose asymptotic form
is known; in this regime governs, e.g., Q2 dependence of pion form factor

Q2 Fπ(Q2)
Q2→∞−→ 16π f2

π αs(Q
2) ⇐⇒ ϕasy

π (x) = 6x (1− x)
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QCD Evolution & Asymptotic PDA
ERBL (Q2) evolution for pion PDA [c.f. DGLAP equations for PDFs]

µ
d

dµ
ϕ(x, µ) =

∫ 1

0

dy V (x, y)ϕ(y, µ)

This evolution equation has a solution of the form

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

α = 3/2 because in Q2 →∞ limit QCD is invariant under the collinear
conformal group SL(2;R)

Gegenbauer-α = 3/2 polynomials are irreducible representations SL(2;R)

The coefficients of the Gegenbauer polynomials, a3/2
n (Q2), evolve

logarithmically to zero as Q2 →∞: ϕπ(x)→ ϕ
asy
π (x) = 6x (1− x)

At what scales is this a good approximation to the pion PDA?

E.g., AdS/QCD find ϕπ(x) ∼ x1/2 (1− x)1/2 at Q2 = 1 GeV2; expansion in

terms of C3/2
n (2x− 1) convergences slowly: a

3/2
32 / a

3/2
2 ∼ 10 %
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Pion PDA from the DSEs

asymptotic

rainbow-ladder

DCSB improved
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Both DSE results, each using a different Bethe-Salpeter kernel, exhibit a
pronounced broadening compared with the asymptotic pion PDA

scale of calculation is given by renormalization point ζ = 2 GeV

A realization of DCSB on the light-front

As we shall see the dilation of pion’s PDA will influence the Q2 evolution of
the pion’s electromagnetic form factor

[L. Chang, ICC, et al., Phys. Rev. Lett. 110, 132001 (2013)] [C.D. Roberts, Prog. Part. Nucl. Phys. 61 50 (2008)]
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Pion PDA from lattice QCD

Lattice QCD can only determine one
non-trivial moment∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.27± 0.04

[V. Braun et al., Phys. Rev. D 74, 074501 (2006)]

scale is Q2 = 4 GeV2

asymptotic

typical of standard analysis
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Standard practice to fit first coefficient of “asymptotic expansion” to moment

ϕπ(x,Q2) = 6x (1− x)
[
1 +

∑
n=2, 4,...

a3/2
n (Q2)C3/2

n (2x− 1)
]

however this expansion is guaranteed to converge rapidly only when Q2 →∞
this procedure results in a double-humped pion PDA

Advocate using a generalized expansion

ϕπ(x,Q2) = Nα x
α(1− x)α

[
1 +

∑
n=2, 4,...

aα+1/2
n (Q2)Cα+1/2

n (2x− 1)
]

Find ϕπ ' xα(1− x)α, α = 0.35+0.32
−0.24 ; good agreement with DSE: α ∼ 0.52
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Updated Pion PDA from lattice QCD

Generalized expansion

ϕπ(x) = Nα x
α(1− x)α[

1 +
∑

aα+
n (Q2)Cα+

n (2x− 1)
]

asymptotic lattice QCD

DCSB improved
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Updated lattice QCD moment: [V. Braun et al., arXiv:1503.03656 [hep-lat]]∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.2361 (41) (39) (?)

DSE prediction:∫ 1

0

dx (2x− 1)2ϕπ(x) = 0.251
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When is the Pion’s PDA Asymptotic

asymptotic

Q2 = 4GeV2

Q2 = 100GeV2
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Under leading order Q2 evolution the pion PDA remains broad to well above
Q2 > 100 GeV2, compared with ϕasy

π (x) = 6x (1− x)

Consequently, the asymptotic form of the pion PDA is a poor approximation
at all energy scales that are either currently accessible or foreseeable in
experiments on pion elastic and transition form factors

Importantly, ϕasy
π (x) is only guaranteed be an accurate approximation to

ϕπ(x) when pion valence quark PDF satisfies: qπv (x) ∼ δ(x)

This is far from valid at forseeable energy scales

[I. C. Cloët, et al., Phys. Rev. Lett. 111, 092001 (2013)] [T. Nguyen, et al., Phys. Rev. C 83, 062201 (2011)]
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When is the Pion’s Valence PDF Asymptotic

LHC
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LO QCD evolution of momentum fraction carried by valence quarks

〈x qv(x)〉 (Q2) =

(
αs(Q

2)

αs(Q2
0)

)γ(0)2
qq /(2β0)

〈x qv(x)〉 (Q2
0) where

γ
(0)2
qq

2β0
> 0

therefore, as Q2 →∞ we have 〈x qv(x)〉 → 0 implies qv(x) ∝ δ(x)

At LHC energies valence quarks still carry 20% of pion momentum
the gluon distribution saturates at 〈x g(x)〉 ∼ 55%

Asymptotia is a long way away!
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Pion Elastic Form Factor
Direct, symmetry-preserving
computation of pion form factor
predicts maximum in Q2 Fπ(Q2)

at Q2 ≈ 6 GeV2

magnitude of this product is
determined by strength of DCSB at
all accessible scales

using DSE pion PDA

using asymptotic pion PDA

forthcoming JLab data
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Q2Fπ(Q2)
Q2�Λ2

QCD∼ 16π f2
π αs(Q

2) w2
π ; wπ =

1

3

∫ 1

0

dx
1

x
ϕπ(x)

Within DSEs there is consistency between the direct pion form factor
calculation and that obtained using the DSE pion PDA

15% disagreement explained by higher order/higher-twist corrections

We predict that QCD power law behaviour – with QCD’s scaling law
violations – sets in at Q2 ∼ 8 GeV2

[L. Chang, ICC, et al., Phys. Rev. Lett. 111, 141802 (2013)]
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Pion Transition Form Factor
using DCSB-broadened PDA

conformal QCD limit

γ∗ γ → π0
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using asymptotic pion PDA

forthcoming JLab data
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At large Q2 the hard gluon exchange in the γ∗ + π → π form factor – needed
to keep the pion intact – results in distinctly different behaviour to the pion
transition form factor γ∗ + π → γ

Q2Fγ∗πγ(Q2)→ 2 fπ w2
π c.f. Q2Fπ(Q2)→ 16π f2

π αs(Q
2) w2

π

Therefore approach to asymptotic limit gives inter alia a unique window
into quark-gluon dynamics in QCD

In full DSE calculation of γ∗π → γ conformal limit approached from below
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Measuring onset of Perturbative scaling

forthcoming JLab data

differentiate from monopole
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Amendolia fit

To observe onset of perturbative power law behaviour – to differentiate from
a monopole – optimistically need data at 8 GeV2 but likely also at 10 GeV2

this is a very challenging task experimentally

Scaling predictions are valid for both spacelike and timelike momenta
timelike data show promise as the means of verifying modern predictions
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