Hadron Physics & QCD's Dyson-Schwinger Equations

Lecture 4: The nucleon and its electromagnetic structure

Ian Cloët Argonne National Laboratory

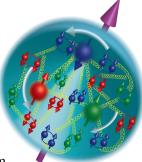
HUGS 2015 Summer School

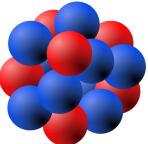
1-19 June 2015

Office of Science

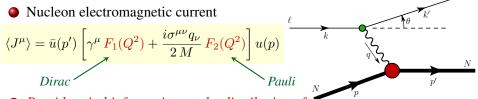
The Beginning of Nuclear Physics

- Hadron physics and ultimately nuclear physics means to chart and compute the distribution of quarks & gluons – even photons, electrons, ... – within hadrons and nuclei
- The archetype for these studies is the proton (*uud*)
 the only stable composite in the Standard Model
- With the discovery of the neutron in 1932 by James Chadwick, the proton and neutron are known to form an isospin-doublet under the strong interaction: the nucleon – the building blocks of nuclei
- Key questions in proton structure:
 - how is spin and angular momentum distributed among its constituents
 - how is charge and magnetization distributed among its constituents





Nucleon Electromagnetic Form Factors



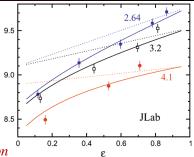
- Provides vital information on the distribution of charge and magnetization within the most basic element of nuclear physics
 - form factors also directly probe confinement at all energy scales
- Today accurate form factor measurements are creating a paradigm shift in our understanding of nucleon structure:
 - proton radius puzzle
 - $\mu_p G_{Ep}/G_{Mp}$ ratio and a possible zero-crossing
 - flavour decomposition and evidence for diquark correlations
 - meson-cloud effects
 - seeking verification of perturbative QCD scaling predictions & scaling violations

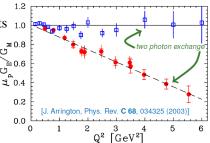
Nucleon Sachs Form Factors

Experiment gives Sachs form factors:

$$\sigma_R(\varepsilon, Q^2) \equiv \varepsilon \frac{d\sigma}{d\Omega} \frac{1+\tau}{\sigma_{\text{Mott}}} = \varepsilon G_E^2 + \tau G_M^2$$
$$G_E = F_1 - \tau F_2; \quad G_M = F_1 + F_2$$

- at a fixed Q^2 the slope of σ_R gives G_E and the y-axis intercept G_M ; $\tau = Q^2/4M^2$
- Until the late 90s these *Rosenbluth separation* experiments found a flat $\mu_p G_{Ep}/G_{Mp}$ ratio
- However *polarization transfer* experiments 1
 pioneered at JLab completely altered up our picture of nucleon structure
 - slope indicates that the distribution of charge and magnetization not the same
 - discrepancy likely a consequence of two-photon exchange





 σ_R / G_D^2

Proton Radius Puzzle

- Since the formulation of QED it has been known that muonic atoms are the ideal testing ground
 - however only very recently has it been possible to study the spectroscopy of muonic atoms
- The charge radius of a hadron is defined by:

 $\left\langle r_E^2 \right\rangle = -6 \frac{\partial}{\partial Q^2} G_E(Q^2) \Big|_{Q^2 = 0}$

- Transitions between energy levels in electronic or muonic atoms are sensitive to $\langle r_E^2 \rangle$
- Radius from muonic hydrogen [Pohl (2010)]: $r_{Ep} = 0.84087 \pm 0.00039 \text{ fm}$
- CODATA: e p scattering + e-hydrogen: $r_{Ep} = 0.8775 \pm 0.0051 \text{ fm}$
- There is a 7σ or 4% difference!
 - one of the most interesting puzzles in physics

Muon

Flectron

Hydrogen

OIL SPILLS There's mo

AGIARISM

oreo tha HIMPANZEES

Experimental Status

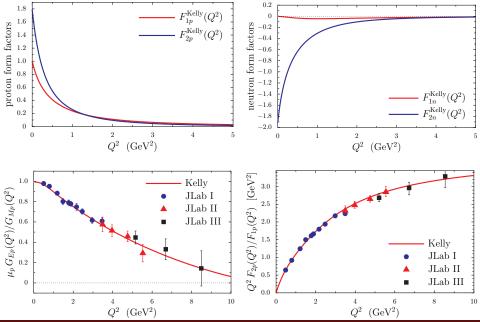
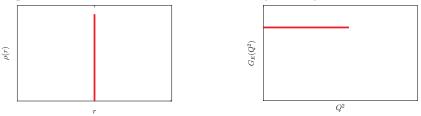


table of contents

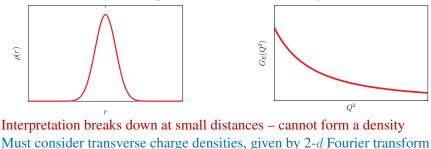
HUGS 2015

Physical Interpretation of Form Factors

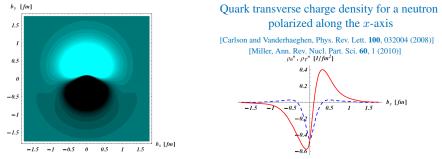
Textbooks teach that in Breit frame $(\vec{p}' = -\vec{p})$ Sachs form factors can be interpreted as 3-d Fourier transforms of the charge & magnetization densities



Deviation from a constant provides information on target structure



Transverse Charge Densities



- It is now recognized that care must be taken when interpreting a 3-D Fourier transform of a form factor as a charge or magnetization density
- A rigorous density can be defined via a 2-D Fourier transform
 - these hadronic transverse charge densities are quantities as seen in a reference frame moving with infinite momentum
- Numerous new physical insights for elastic and transition form factors
 - e.g. the negative central neutron charge density, caused by the dominance of d quarks at the center

Form Factors in Conformal Limit ($Q^2 ightarrow \infty$)

- At asymptotic energies hadron form factors factorize into *parton distribution amplitudes* & a hard scattering kernel [Farrar, Jackson; Lepage, Brodsky]
 - only the valence Fock state ($\bar{q}q$ or qqq) can contribute as $Q^2 \rightarrow \infty$
 - both confinement and asymptotic freedom in QCD are important in this limit
 - Most is known about $\bar{q}q$ bound states, e.g., for the pion:

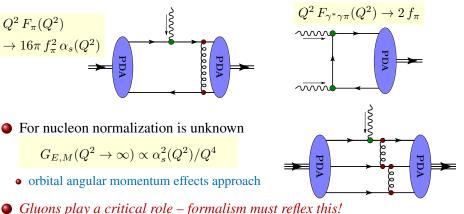
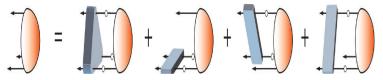


table of contents

Nucleon Structure

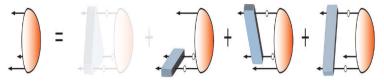
- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation



- sums all possible interactions between three dressed-quarks
- much of the three-body interaction can be absorbed into renormalized two-body interactions
- A *prediction* of these approaches is that owing to DCSB in QCD strong diquark correlations exist within baryons
 - any interaction that describes colour-singlet mesons also generates *non-pointlike* diquark correlations in the colour- $\overline{3}$ channel
 - where *scalar and axial-vector diquarks* are most important for the nucleon

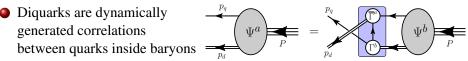
Nucleon Structure

- A robust description of the nucleon as a bound state of 3 dressed-quarks can only be obtained within an approach that respects Poincaré covariance
- Such a framework is provided by the Poincaré covariant Faddeev equation

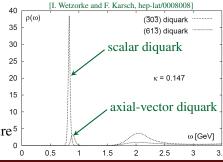


- sums all possible interactions between three dressed-quarks
- much of the three-body interaction can be absorbed into renormalized two-body interactions
- A *prediction* of these approaches is that owing to DCSB in QCD strong diquark correlations exist within baryons
 - any interaction that describes colour-singlet mesons also generates *non-pointlike* diquark correlations in the colour- $\overline{3}$ channel
 - where *scalar and axial-vector diquarks* are most important for the nucleon

Diquarks



- typically diquark radii are similar to analogous mesons: $r_{0^+} \sim r_{\pi}, r_{1^+} \sim r_{\rho}$
- These dynamic qq correlations are not the static diquarks of old
 - all quarks participate in all diquark correlations
 - in a given baryon the Faddeev equation predicts a probability for each diquark cluster
 - for the nucleon: scalar $(0^+) \sim 70\%$ axial-vector $(1^+) \sim 30\%$
- Faddeev equation spectrum has significant overlap with constituent quark model and limited relation to Lichtenberg's quark+diquark model
- Mounting evidence from hadron structure⁵ (e.g. PDFs) and lattice QCD ⁰



Diquarks in the NJL model

- To describe diquarks in the NJL model one usually rewrites the $\bar{q}q$ interaction Lagrangian into a qq interaction Lagrangian

$$\left(\bar{\psi}\,\Gamma\,\psi\right)^2 \to \left(\bar{\psi}\,\Omega\,\bar{\psi}^T\right)\left(\psi^T\,\bar{\Omega}\,\psi\right)$$

- Ω has quantum numbers if interaction channel
- NJL qq Lagrangian in the scalar and axial-vector diquark channels reads

$$\mathcal{L}_{I} = G_{s} \left[\overline{\psi} \gamma_{5} C \tau_{2} \beta^{A} \overline{\psi}^{T} \right] \left[\psi^{T} C^{-1} \gamma_{5} \tau_{2} \beta^{A'} \psi \right] + G_{a} \left[\overline{\psi} \gamma_{\mu} C \tau_{i} \tau_{2} \beta^{A} \overline{\psi}^{T} \right] \left[\psi^{T} C^{-1} \gamma^{\mu} \tau_{2} \tau_{j} \beta^{A'} \psi \right] + \dots$$

- the first term is the scalar diquark channel $(J^P = 0^+, T = 0)$
- τ_2 couples isospin of two quarks to T = 0, $C\gamma_5$ couples spin to J = 0, $\beta^A = \sqrt{\frac{3}{2}} \lambda^A \quad (A = 2, 5, 7)$ couples quarks to colour $\overline{3}$
- the second the axial-vector diquark channel $(J^P = 1^+, T = 1)$

NJL diquark t-matrices

) Bethe-Salpeter equation for qq scattering matrix reads

=

$$\mathcal{T}(q)_{\alpha\beta,\gamma\delta} = K_{\alpha\beta,\gamma\delta} + \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} K_{\alpha\beta,\varepsilon\lambda} S(k)_{\varepsilon\varepsilon'} S(q-k)_{\lambda\lambda'} \mathcal{T}(q)_{\varepsilon'\lambda',\gamma\delta},$$

The Feynman rules for the interaction kernels are

$$\mathcal{L}_{s} = 4i G_{s} \left(\gamma_{5} C \tau_{2} \beta^{A} \right)_{\alpha \beta} \left(C^{-1} \gamma_{5} \tau_{2} \beta^{A} \right)_{\gamma \delta} \quad \mathcal{K}_{a} = 4i G_{a} \left(\gamma_{\mu} C \tau_{i} \tau_{2} \beta^{A} \right)_{\alpha \beta} \left(C^{-1} \gamma^{\mu} \tau_{2} \tau_{i} \beta^{A} \right)_{\gamma \delta}$$

The solution to the BSE is of the form: $T(q)_{\alpha\beta,\gamma\delta} = \tau(q^2) \Omega_{\alpha\beta} \overline{\Omega}_{\gamma\delta}$

$$\tau_s(q^2) = \frac{4i\,G_s}{1+2\,G_s\,\Pi_s(q^2)} \qquad \tau_a^{\mu\nu}(q) = \frac{4\,i\,G_a}{1+2\,G_a\,\Pi_a(q^2)} \left[g^{\mu\nu} + 2\,G_a\,\Pi_a(q^2)\,\frac{q^\mu q^\nu}{q^2} \right]$$

• these reduced *t*-matrices are the diquark propagators

k

NJL Faddeev Equation

- To describe a nucleon, Faddeev equation kernel must be projected onto colour singlet, $spin-\frac{1}{2}$, isospin- $\frac{1}{2}$ & positive parity
- In NJL common to make the *static approximation* to quark exchange kernel: $S(p) \rightarrow -\frac{1}{M}$
 - with this approximation Faddeev amplitude does not depend of relative momentum between the quark and diquark
 - The Faddeev equation can then be written in as

$$\Gamma_N(p,s) = K(p)\,\Gamma_N(p,s)$$

• With only scalar and axial-vector diquarks the vertex must have the form

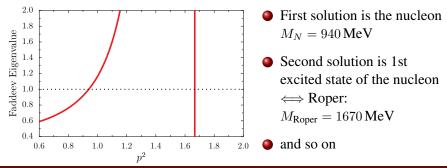
$$\Gamma_N(p,s) = \sqrt{-Z_N} \begin{bmatrix} \alpha_1 \\ \alpha_2 \frac{p^{\mu}}{M_N} \gamma_5 + \alpha_3 \gamma^{\mu} \gamma_5 \end{bmatrix} u_N(p,s)$$

Faddeev Equation Solutions

Explicitly the NJL Faddeev equation reads: $\prod_{Na(s)}^{\mu\nu} = \int \frac{d^4k}{(2\pi)^4} \tau_{a(s)}^{\mu\nu} (p-k) S(k)$

$$\begin{bmatrix} \Gamma_s \\ \Gamma_a^{\mu} \end{bmatrix} = \frac{3}{M} \begin{bmatrix} \Pi_{Ns} & \sqrt{3}\gamma_{\alpha}\gamma_{5} \Pi_{Na}^{\alpha\beta} \\ \sqrt{3}\gamma_{5}\gamma^{\mu} \Pi_{Ns} & -\gamma_{\alpha}\gamma^{\mu} \Pi_{Na}^{\alpha\beta} \end{bmatrix} \begin{bmatrix} \Gamma_s \\ \Gamma_{a,\beta} \end{bmatrix}$$

- The Faddeev equation reduces to a linear matrix equation which is a function of p^2 the mass-squared of the bound state
 - a physical state exists for any p^2 that gives an eigenvalue if one



DSE Faddeev Equation

- The DSE Faddeev equation has far more structure than in NJL
- For example the DSE Faddeev equation including scalar and axial-vector diquarks reads

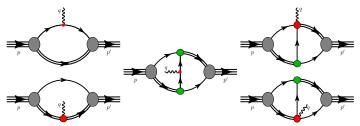
$$\begin{bmatrix} \mathcal{S}(k,P) \\ \mathcal{A}_i^{\mu}(k,P) \end{bmatrix} u_N(p) = \int \frac{d^4\ell}{(2\pi)^4} \, \mathcal{M}_{ij}^{\mu\nu}(\ell;k,P) \begin{bmatrix} \mathcal{S}(\ell,P) \\ \mathcal{A}_{\nu}^j(\ell,P) \end{bmatrix} u_N(p)$$

- importantly the vertex function depends on the relative momentum, k, between the quark and diquark
- the Faddeev kernel is $\mathcal{M}_{ij}^{\mu\nu}(\ell;k,P)$
- S(k, P) and $A_i^{\mu}(k, P)$ describe the momentum space correlation between the quark and diquark in the nucleon
- This equation can be solved numerically on a large grid in k and P
- However standard practice to use an expansion in Chebyshev polynomials for S(k, P) & $A_i^{\mu}(k, P)$ and the solve for the coefficients of this expansion

Nucleon EM Form Factors from DSEs

- A robust description of form factors is only possible if electromagnetic gauge invariance is respected; equivalently all relevant Ward-Takahashi identities (WTIs) must be satisfied
- For quark-photon vertex WTI implies: $\sqrt{q} = \sqrt{q} + \sqrt{q}$

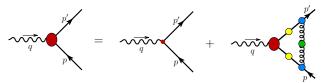
- transverse structure unconstrained
- Diagrams needed for a gauge invariant nucleon EM current in DSEs



• Feedback with experiment can shed light on elements of QCD via DSEs

Dressed Quark EM Form Factors

• Quark-photon vertex is given by the *inhomogeneous Bethe-Salpeter* equation – driving term is an external vector current: $\gamma^{\mu} \left(\frac{1}{6} + \frac{\tau_3}{2}\right)$



• Lorentz covariance implies that the quark–photon vertex has the structure

$$\Gamma^{\mu}_{\gamma qq}(p',p) = \sum_{i=1}^{12} \, \lambda^{\mu}_i \, f_i(p'^2,p^2,q^2) = \Gamma^{\mu}_L(p',p) + \Gamma^{\mu}_T(p',p)$$

- In QCD the properties of the quark–photon vertex are governed by the quark propagator and the quark–gluon vertex
- A Ward-Takahashi identity constrains Γ_L^{μ} piece of quark–photon vertex

$$q_{\mu} \Gamma^{\mu}_{\gamma qq} = q_{\mu} \Gamma^{\mu}_{L} = \hat{Q} \left[S^{-1}(p') - S^{-1}(p) \right], \qquad q_{\mu} \Gamma^{\mu}_{T} = 0$$

• these identities are a consequence of local $U(1)_V$ gauge invariance

. 1

. /

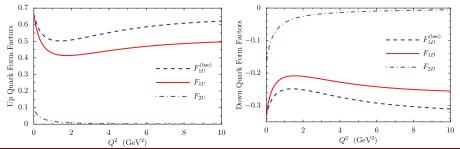
- The longitudinal piece of the quark-photon vertex, $\Gamma^{\mu}_{\gamma qq} = \Gamma^{\mu}_{L} + \Gamma^{\mu}_{T}$, is completely determined by the quark propagator
- This result is encapsulated in by Ball-Chiu vertex

$$\Gamma^{\mu}_{BC} = \frac{A(p'^2) + A(p^2)}{2} \gamma^{\mu} - \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} i(p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)(p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)(p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p'^2) - A(p^2)}{p'^2 - p^2} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p'^2 - p} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p'^2 - p} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p' + p} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p' + p} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p' + p} (p' + p)^{\mu} + \frac{1}{2} \frac{A(p' + p)}{p' + p} (p' + p)^{\mu} +$$

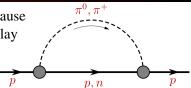
- Recall: $S^{-1}(p) = i \not p A(p^2) + B(p^2)$ it is then straight forward to show Γ^{μ}_{BC} satisfies the WTI
- The nature of the *quark-photon vertex* is largely controlled by the structure of the *quark-gluon vertex*
 - different quark-gluon vertices can give very similar quark-propagators
 - therefore transverse piece of $\Gamma^{\mu}_{\gamma qq}$ sensitive to the quark-gluon vertex
- $\Gamma^{\mu}_{\gamma,T}$ is largely unknown but expect large anomalous magnetic moment

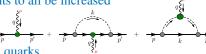
The role of Pions

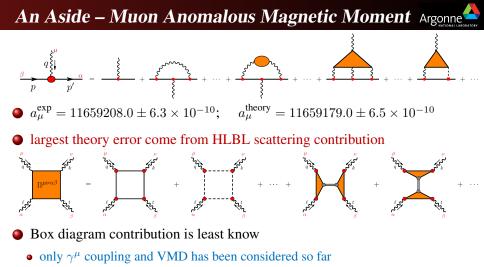
- Pions are the lightest hadrons, therefore, because of quantum fluctuations we expect them to play an important role in many observables
- Because the pion is light it is long range
 - expect nucleon radii, and magnetic moments to all be increased
- Dressed quark with pion cloud:
 - key results is that the pion give the dressed quarks and anomalous magnetic moment and an increased size



 $Z_{0} \times$







- we argue that the anomalous magnetic moment term cannot be ignored
- At least error on $a_{\mu}^{\text{HLBL}} = 8.3 \pm 3.2 \times 10^{-10}$ should be much larger

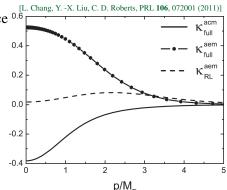
Good reference: F. Jegerlehner, A. Nyffeler, Physics Reports 477 (2009)

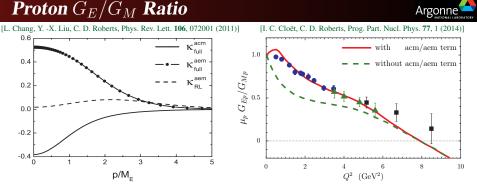
Beyond Rainbow Ladder Truncation

Include "anomalous chromomagnetic" term in quark-gluon vertex

 $\frac{1}{4\pi} g^2 D_{\mu\nu}(\ell) \Gamma_{\nu}(p',p) \rightarrow \alpha_{\rm eff}(\ell) D_{\mu\nu}^{\rm free}(\ell) \left[\gamma_{\nu} + i\sigma^{\mu\nu} q_{\nu} \tau_5(p',p) \right]$

- In chiral limit *anomalous chromomagnetic* term can only appear through DCSB – since operator flips quark helicity
- EM properties of a spin- $\frac{1}{2}$ point particle are characterized by two quantities:
 - charge: e & magnetic moment: μ
- Expect strong gluon dressing to produce ^{0.6} non-trivial electromagnetic structure for a dressed quark
 - recall dressing produces from massless quark – a $M \sim 400 \,\mathrm{MeV}$ dressed quark
- Large anomalous chromomagnetic moment in the quark-gluon vertex produces a large quark anomalous electromagnetic moment
 - dressed quarks are not point particles HUGS 2015



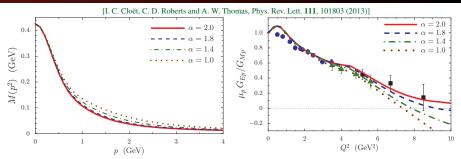


Quark anomalous magnetic moment required for good agreement with data

- important for low to moderate Q^2
- power law suppressed at large Q^2

- Illustrates how feedback with EM form factor measurements can help constrain the quark-photon vertex and therefore the quark-gluon vertex within the DSE framework
 - knowledge of quark–gluon vertex provides $\alpha_s(Q^2)$ within DSEs \Leftrightarrow confinement

Proton G_E form factor and **DCSB**



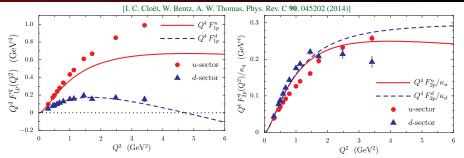
Find that slight changes in $M(p^2)$ on the domain $1 \leq p \leq 3 \text{ GeV}$ have a striking effect on the G_E/G_M proton form factor ratio

• strong indication that position of a zero is very sensitive to underlying dynamics and the nature of the transition from nonperturbative to perturbative QCD

• Zero in
$$G_E = F_1 - \frac{Q^2}{4M_N^2}F_2$$
 largely determined by evolution of $Q^2 F_2$

- F₂ is sensitive to DCSB through the dynamically generated quark anomalous electromagnetic moment *vanishes in perturbative limit*
- the quicker the perturbative regime is reached the quicker $F_2 \rightarrow 0$

Flavour separated proton form factors



Prima facie, these experimental results are remarkable

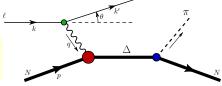
- u and d quark sector form factors have very different scaling behaviour
- However, when viewed in context of diquark correlations results are straightforward to understand
 - in proton (*uud*) the *d* quark is much more likely to be in a scalar diquark [*ud*] than a *u* quark; diquark ⇒ 1/Q²

Question of the second second

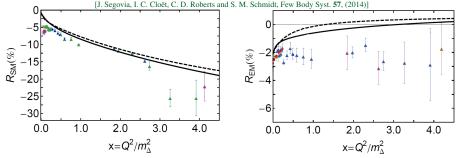
Nucleon to Resonance Transitions

- Given the challenges posed by non-perturbative QCD it is insufficient to study hadron ground-states alone
- Nucleon transition form factors provide a critical extension to elastic form factors – providing more windows into and different perspectives on quark-gluon dynamics
 - e.g. nucleon resonances are more sensitive to long-range effects in QCD than the properties of ground states . . . analogous to exotic and hybrid mesons
- Important example is $N \to \Delta$ transition parametrized by three form factors
 - $\bullet \ G^*_E(Q^2), \ G^*_M(Q^2), \ G^*_C(Q^2)$
 - if both N and Δ were purely S-wave then $G_E^*(Q^2) = 0 = G_C^*(Q^2)$
- When analyzing the N → ∆ transition it is common to construct the ratios:

$$R_{EM} = -\frac{G_E^*}{G_M^*}, \quad R_{SM} = -\frac{|\boldsymbol{q}|}{2M_\Delta} \frac{G_C^*}{G_M^*}$$



$N \rightarrow \Delta$ form factors from the DSEs

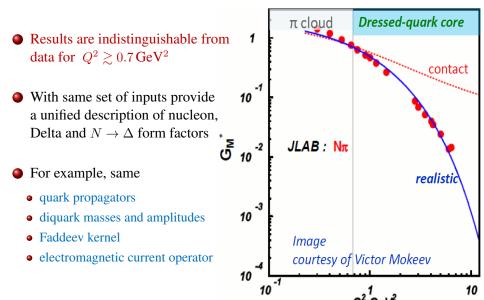


• For $R_{SM} = -\frac{|q|}{2M_{\Delta}} \frac{G_C^*}{G_M^*}$ DSEs reproduces rapid fall off with Q^2

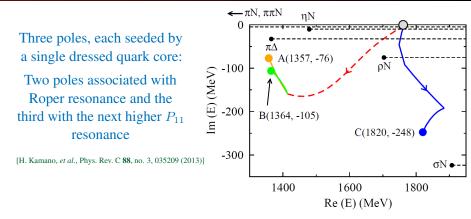
- Find that $R_{EM} = -\frac{G_E^*}{G_M^*}$ is a particular sensitive measure of *quark orbital angular momentum* within the nucleon and Δ
- At large Q^2 helicity conservation demands: $R_{SM} \rightarrow \text{constant}, R_{EM} \rightarrow 1$
 - however these asymptotic results are not reached until incredibility large Q^2 which will not be accessible at any present or foreseeable facility
- Comparison with Argonne-Osaka results suggest that the pion cloud is masking expected zero in R_{EM}

table of contents

$N \rightarrow \Delta$ magnetic form factor



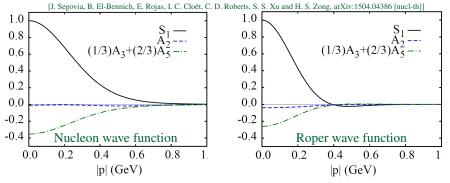
Roper Resonance



- The Excited Baryon Analysis Center (EBAC), resolved a fifty-year puzzle by demonstrating that the Roper resonance is the proton's first radial excitation
 - its lower-than-expected mass owes to a dressed-quark core shielded by a dense cloud of pions and other mesons

[Decadal Report on Nuclear Physics: Exploring the Heart of Matter]

Roper Resonance from the DSEs



The Faddeev equation that produces the nucleon also gives its excited states

- amplitudes for the lightest excited state typically possess a zero
- therefore lightest nucleon excited state is a radial excitation \iff Roper resonance
- "quark core" mass: $M_R = 1.73$ GeV; c.f. Argonne-Osaka group $M_R = 1.76$ GeV

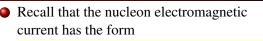
Now have a unified description of the nucleon, Delta and Roper baryons

Find e.g. that the Roper charge radius is 80% larger than the nucleon's

table of contents

Nucleon and Roper Form Factors

 N, N^*



$$\langle J^{\mu} \rangle = u_N(p') \left[\gamma^{\mu} F_{1N} + \frac{i \sigma^{\mu\nu} q_{\nu}}{2 M_N} F_{2N} \right] u_N(p)$$

- The Roper $[N^*(1440)]$ is likely the first N, N^* p radial excitation of the nucleon and has the same quantum numbers
- Therefore the Roper electromagnetic current has the form

$$\langle J^{\mu} \rangle = u_{N^{*}}(p') \left[\gamma^{\mu} F_{1N^{*}}(Q^{2}) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M_{N}^{*}} F_{2N^{*}}(Q^{2}) \right] u_{N^{*}}(p)$$

The electromagnetic current can cause a transition between the nucleon and Roper: $[N \rightarrow N^*]$

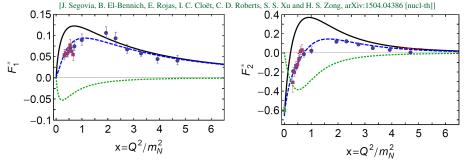
k

• Gauge invariance implies this transition current must satisfy: $q_{\mu} J^{\mu} = 0$

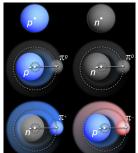
$$\langle J^{\mu} \rangle = u_{N^{*}}(p') \left[\left(\gamma^{\mu} - \frac{q^{\mu} \not{q}}{q^{2}} \right) F_{1NR}(Q^{2}) + \frac{i \sigma^{\mu\nu} q_{\nu}}{M_{N} + M_{N^{*}}} F_{2NR}(Q^{2}) \right] u_{N}(p)$$

• orthogonality of the N and N^* wave functions implies $F_{1NR}(0) = 0$

Nucleon \rightarrow **Roper transition form factors**

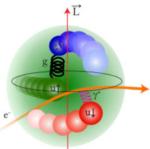


- Results agree well with data for $Q^2 \gtrsim 2 m_N^2$ & at the real photon point
- However contemporary kernels just produce a hadron's *dressed-quark core*
 - pion cloud contributions are absent from our calculation, however these are inferred from the deviation with data
 - on domain $0 < Q^2 \lesssim 2 m_N^2$ pion cloud contributions should be negative and deplete the transition form factors



Conclusion

- QCD will only be solved by deploying a diverse array of experimental and theoretical methods
 - must define and solve the problems of confinement and its relationship with DCSB
- These are two of the most important challenges in fundamental Science



- Nucleon elastic and transition form factors provide an important avenue with which to address these critical questions
- We have provided a unified treatment of the nucleon, Delta and Roper elastic and transition form factors
 - demonstrating e.g. that the location of zero's in form factors e.g. G_{Ep} , F_{1p}^d provide tight constraints on QCD dynamics

• Continuum-QCD approaches are essential; are at the forefront of guiding experiment & provide rapid feedback; building intuition & understanding