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The Beginning of Nuclear Physics
Hadron physics and ultimately nuclear physics
means to chart and compute the distribution of
quarks & gluons – even photons, electrons, . . . –
within hadrons and nuclei

The archetype for these studies is the proton (uud)
– the only stable composite in the Standard Model

With the discovery of the neutron in 1932 by James
Chadwick, the proton and neutron are known to form
an isospin-doublet under the strong interaction:
the nucleon – the building blocks of nuclei

Key questions in proton structure:

how is spin and angular momentum distributed
among its constituents
how is charge and magnetization distributed
among its constituents
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Nucleon Electromagnetic Form Factors

〈Jµ〉 = ū(p′)

[
γµ F1(Q2) +

iσµνqν
2M

F2(Q2)

]
u(p)

Dirac Pauli

ℓ

q

k

k′

pN
p′

N

θ
Nucleon electromagnetic current

Provides vital information on the distribution of
charge and magnetization within the most basic element of nuclear physics

form factors also directly probe confinement at all energy scales

Today accurate form factor measurements are creating a paradigm shift in
our understanding of nucleon structure:

proton radius puzzle

µpGEp/GMp ratio and a possible zero-crossing

flavour decomposition and evidence for diquark correlations

meson-cloud effects

seeking verification of perturbative QCD scaling predictions & scaling violations
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Nucleon Sachs Form Factors
Experiment gives Sachs form factors:

σR(ε,Q2) ≡ ε dσ
dΩ

1 + τ

σMott
= εG2

E + τ G2
M

GE = F1 − τ F2; GM = F1 + F2

at a fixed Q2 the slope of σR gives GE and
the y-axis intercept GM ; τ = Q2/4M2

Until the late 90s these Rosenbluth separation
experiments found a flat µpGEp/GMp ratio

However polarization transfer experiments
– pioneered at JLab – completely altered
our picture of nucleon structure

slope indicates that the distribution of
charge and magnetization not the same
discrepancy likely a consequence of
two-photon exchange
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Proton Radius Puzzle
Since the formulation of QED it has been
known that muonic atoms are the ideal
testing ground

however only very recently has it been possible
to study the spectroscopy of muonic atoms

The charge radius of a hadron is defined by:〈
r2
E

〉
= −6 ∂

∂Q2 GE(Q2)
∣∣
Q2=0

Transitions between energy levels in electronic
or muonic atoms are sensitive to

〈
r2
E

〉
Radius from muonic hydrogen [Pohl (2010)]:

rEp = 0.84087± 0.00039 fm

CODATA: e p scattering + e-hydrogen:
rEp = 0.8775± 0.0051 fm

There is a 7σ or 4% difference!
one of the most interesting puzzles in physics
so far defies explanationtable of contents HUGS 2015 5 / 33



Experimental Status
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Physical Interpretation of Form Factors
Textbooks teach that in Breit frame (~p ′ = −~p) Sachs form factors can be
interpreted as 3-d Fourier transforms of the charge & magnetization densities

ρ
(r

)

r

G
E
(Q

2
)

Q2

Deviation from a constant provides information on target structure

ρ
(r

)

r

G
E
(Q

2
)

Q2

Interpretation breaks down at small distances – cannot form a density
Must consider transverse charge densities, given by 2-d Fourier transform
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Transverse Charge Densities

It is now recognized that care must be taken when interpreting a 3-D Fourier
transform of a form factor as a charge or magnetization density

A rigorous density can be defined via a 2-D Fourier transform
these hadronic transverse charge densities are quantities as seen in a reference
frame moving with infinite momentum

Numerous new physical insights for elastic and transition form factors
e.g. the negative central neutron charge density, caused by the dominance of d
quarks at the center

Quark transverse charge density for a neutron
polarized along the x-axis

[Carlson and Vanderhaeghen, Phys. Rev. Lett. 100, 032004 (2008)]
[Miller, Ann. Rev. Nucl. Part. Sci. 60, 1 (2010)]
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Form Factors in Conformal Limit (Q2 →∞)
At asymptotic energies hadron form factors factorize into parton distribution
amplitudes & a hard scattering kernel [Farrar, Jackson; Lepage, Brodsky]

only the valence Fock state (q̄q or qqq) can contribute as Q2 →∞
both confinement and asymptotic freedom in QCD are important in this limit

Most is known about q̄q bound states, e.g., for the pion:

P
D
A

P
D
A

P
D
A

For nucleon normalization is unknown

GE,M (Q2 →∞) ∝ α2
s(Q

2)/Q4

orbital angular momentum effects approach

P
D
A

P
D
A

Gluons play a critical role – formalism must reflex this!

Q2 Fπ(Q2)

→ 16π f2
π αs(Q

2)

Q2 Fγ∗γπ(Q2)→ 2 fπ
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Nucleon Structure
A robust description of the nucleon as a bound state of 3 dressed-quarks can
only be obtained within an approach that respects Poincaré covariance

Such a framework is provided by the Poincaré covariant Faddeev equation

sums all possible interactions between three dressed-quarks
much of the three-body interaction can be absorbed into renormalized two-body
interactions

A prediction of these approaches is that owing to DCSB in QCD – strong
diquark correlations exist within baryons

any interaction that describes colour-singlet mesons also generates non-pointlike
diquark correlations in the colour-3̄ channel
where scalar and axial-vector diquarks are most important for the nucleon
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Diquarks

P
pd

pq

Ψa =
P

pq

pd

Ψb
Γ

a

Γb

[I. Wetzorke and F. Karsch, hep-lat/0008008]

Diquarks are dynamically
generated correlations
between quarks inside baryons

typically diquark radii are similar to analogous mesons: r0+ ∼ rπ , r1+ ∼ rρ
These dynamic qq correlations are not the static diquarks of old

all quarks participate in all diquark correlations
in a given baryon the Faddeev equation predicts a probability for each diquark
cluster
for the nucleon: scalar (0+) ∼ 70%

axial-vector (1+) ∼ 30%

Faddeev equation spectrum has
significant overlap with constituent
quark model and limited relation to
Lichtenberg’s quark+diquark model

Mounting evidence from hadron structure
(e.g. PDFs) and lattice QCD

scalar diquark

axial-vector diquark
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Diquarks in the NJL model
To describe diquarks in the NJL model one usually rewrites the q̄q
interaction Lagrangian into a qq interaction Lagrangian

(
ψ̄ Γψ

)2 → (
ψ̄Ω ψ̄T

) (
ψT Ω̄ψ

)
Ω has quantum numbers if interaction channel

Γ Γ Ω Ω

NJL qq Lagrangian in the scalar and axial-vector diquark channels reads

LI = Gs

[
ψ γ5 C τ2 β

A ψ
T
][
ψT C−1 γ5 τ2 β

A′ ψ
]

+Ga

[
ψ γµ C τiτ2 β

A ψ
T
][
ψT C−1 γµ τ2τj β

A′ ψ
]

+ . . . .

the first term is the scalar diquark channel (JP = 0+, T = 0)
τ2 couples isospin of two quarks to T = 0, Cγ5 couples spin to J = 0,

βA =
√

3
2 λ

A (A = 2, 5, 7) couples quarks to colour 3̄

the second the axial-vector diquark channel (JP = 1+, T = 1)
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NJL diquark t-matrices
Bethe-Salpeter equation for qq scattering matrix reads

T (q)αβ,γδ = Kαβ,γδ +
1

2

∫
d4k

(2π)4
Kαβ,ελ S(k)εε′ S(q − k)λλ′ T (q)ε′λ′,γδ,

γ

δ

q

α

β

=

γ

δ

α

β

+

γ

δ

ε′

λ′

α

β

ε

λ

note symmetry factor of 1
2 (c.f. q̄q BSE)

The Feynman rules for the interaction kernels are

Ks = 4i Gs(γ5 C τ2 β
A)

αβ
(C−1 γ5 τ2 β

A)
γδ

Ka = 4i Ga(γµ C τiτ2 βA)
αβ

(C−1 γµ τ2τi β
A)

γδ

The solution to the BSE is of the form: T (q)αβ,γδ = τ(q2) ΩαβΩ̄γδ

τs(q
2) = 4i Gs

1+2Gs Πs(q2) τµνa (q) = 4 i Ga
1+2Ga Πa(q2)

[
gµν + 2Ga Πa(q2)

qµqν

q2

]
these reduced t-matrices are the diquark propagators
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NJL Faddeev Equation

p
=

p

To describe a nucleon, Faddeev
equation kernel must be
projected onto colour singlet,
spin- 1

2 , isospin- 1
2 & positive parity

In NJL common to make the static approximation to quark exchange
kernel: S(p)→ − 1

M

with this approximation Faddeev amplitude does not depend of relative
momentum between the quark and diquark

The Faddeev equation can then be written in as

ΓN (p, s) = K(p) ΓN (p, s)

With only scalar and axial-vector diquarks the vertex must have the form

ΓN (p, s) =
√
−ZN

[
α1

α2
pµ

MN
γ5 + α3 γ

µγ5

]
uN (p, s)
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Faddeev Equation Solutions
Explicitly the NJL Faddeev equation reads: Πµν

Na(s) =
∫

d4k
(2π)4 τ

µν
a(s)(p− k)S(k)[

Γs
Γµa

]
=

3

M

[
ΠNs

√
3γαγ5 Παβ

Na√
3γ5γ

µ ΠNs −γαγµ Παβ
Na

][
Γs

Γa,β

]

The Faddeev equation reduces to a linear matrix equation which is a
function of p2 – the mass-squared of the bound state

a physical state exists for any p2 that gives an eigenvalue if one

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

F
ad

d
ee

v
E

ig
en

va
lu

e

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

p2

First solution is the nucleon
MN = 940 MeV

Second solution is 1st
excited state of the nucleon
⇐⇒ Roper:
MRoper = 1670 MeV

and so on

table of contents HUGS 2015 15 / 33



DSE Faddeev Equation
The DSE Faddeev equation has far more structure than in NJL

For example the DSE Faddeev equation including scalar and axial-vector
diquarks reads[
S(k, P )

Aµi (k, P )

]
uN (p) =

∫
d4`

(2π)4
Mµν

ij (`; k, P )

[
S(`, P )

Ajν(`, P )

]
uN (p)

importantly the vertex function depends on the relative momentum, k, between
the quark and diquark

the Faddeev kernel isMµν
ij (`; k, P )

S(k, P ) and Aµi (k, P ) describe the momentum space correlation between the
quark and diquark in the nucleon

This equation can be solved numerically on a large grid in k and P

However standard practice to use an expansion in Chebyshev polynomials
for S(k, P ) & Aµi (k, P ) and the solve for the coefficients of this expansion
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Nucleon EM Form Factors from DSEs
A robust description of form factors is only possible if electromagnetic
gauge invariance is respected; equivalently all relevant Ward-Takahashi
identities (WTIs) must be satisfied

For quark-photon vertex WTI implies:

qµ Γµγqq(p
′, p) = Q̂q

[
S−1
q (p′)− S−1

q (p)
]

transverse structure unconstrained

Diagrams needed for a gauge invariant nucleon EM current in DSEs

p p′

q

p p′
q

p p′

q

p p′

q

p p′q

Feedback with experiment can shed light on elements of QCD via DSEs

q

p

p′

=
q

p

p′

+
q

p

p′
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Dressed Quark EM Form Factors
Quark-photon vertex is given by the inhomogeneous Bethe-Salpeter
equation – driving term is an external vector current: γµ

(
1
6 + τ3

2

)

q

p

p′

=
q

p

p′

+
q

p

p′

Lorentz covariance implies that the quark–photon vertex has the structure

Γµγqq(p
′, p) =

∑12

i=1
λµi fi(p

′2, p2, q2) = ΓµL(p′, p) + ΓµT (p′, p)

In QCD the properties of the quark–photon vertex are governed by the quark
propagator and the quark–gluon vertex

A Ward-Takahashi identity constrains ΓµL piece of quark–photon vertex

qµ Γµγqq = qµ ΓµL = Q̂
[
S−1(p′)− S−1(p)

]
, qµ ΓµT = 0

these identities are a consequence of local U(1)V gauge invariance
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DSE Quark Form Factors

q

p

p′

=
q

p

p′

+
q

p

p′

qµ Γµγqq = Q̂
[
S−1(p′)− S−1(p)

]
The longitudinal piece of the quark-photon vertex, Γµγqq = ΓµL + ΓµT , is
completely determined by the quark propagator

This result is encapsulated in by Ball-Chiu vertex

ΓµBC = A(p′2)+A(p2)
2 γµ − A(p′2)−A(p2)

p′2−p2 i(p′ + p)µ + 1
2
A(p′2)−A(p2)

p′2−p2 (/p
′ + /p)(p

′ + p)µ

Recall: S−1(p) = i/pA(p2) +B(p2) – it is then straight forward to show
ΓµBC satisfies the WTI

The nature of the quark-photon vertex is largely controlled by the structure
of the quark-gluon vertex

different quark-gluon vertices can give very similar quark-propagators
therefore transverse piece of Γµγqq sensitive to the quark-gluon vertex

Γµγ,T is largely unknown – but expect large anomalous magnetic moment
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The role of Pions

p p′

µ

q

ZQ × +
p p′

µ

q

k

+
p p′k

µ

q

Pions are the lightest hadrons, therefore, because
of quantum fluctuations we expect them to play
an important role in many observables

Because the pion is light it is long range
expect nucleon radii, and magnetic moments to all be increased

Dressed quark with pion cloud:
key results is that the pion give the dressed quarks
and anomalous magnetic moment and an increased size
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An Aside – Muon Anomalous Magnetic Moment

β α

p p′

µ

q

= + + . . . + + . . . + + . . . + + . . .

a
exp
µ = 11659208.0± 6.3× 10−10; a

theory
µ = 11659179.0± 6.5× 10−10

largest theory error come from HLBL scattering contribution

q k

ℓ t

µ ν

α β

Πµναβ =

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ · · · +

q k

ℓ t

µ ν

α β

+

q k

ℓ t

µ ν

α β

+ . . .

Box diagram contribution is least know

only γµ coupling and VMD has been considered so far
we argue that the anomalous magnetic moment term cannot be ignored

At least error on aHLBL
µ = 8.3± 3.2× 10−10 should be much larger

Good reference: F. Jegerlehner, A. Nyffeler, Physics Reports 477 (2009)
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Beyond Rainbow Ladder Truncation
Include “anomalous chromomagnetic” term in quark-gluon vertex

1
4π g

2Dµν(`) Γν(p′, p) → αeff(`)D
free
µν (`) [γν + iσµνqν τ5(p′, p)]

In chiral limit anomalous chromomagnetic term can only appear through
DCSB – since operator flips quark helicity

EM properties of a spin- 1
2 point particle are characterized by two quantities:

charge: e & magnetic moment: µ

Expect strong gluon dressing to produce
non-trivial electromagnetic structure
for a dressed quark

recall dressing produces – from massless
quark – a M ∼ 400 MeV dressed quark

Large anomalous chromomagnetic
moment in the quark-gluon vertex –
produces a large quark anomalous
electromagnetic moment

dressed quarks are not point particles

[L. Chang, Y. -X. Liu, C. D. Roberts, PRL 106, 072001 (2011)]
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Proton GE/GM Ratio
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with acm/aem term

without acm/aem term

Quark anomalous magnetic moment required for good agreement with data
important for low to moderate Q2

power law suppressed at large Q2

Illustrates how feedback with EM form factor measurements can help
constrain the quark–photon vertex and therefore the quark–gluon vertex
within the DSE framework

knowledge of quark–gluon vertex provides αs(Q2) within DSEs⇔ confinement

[L. Chang, Y. -X. Liu, C. D. Roberts, Phys. Rev. Lett. 106, 072001 (2011)] [I. C. Cloët, C. D. Roberts, Prog. Part. Nucl. Phys. 77, 1 (2014)]

q

p

p′

=
q

p

p′

+
q

p

p′
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Proton GE form factor and DCSB
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Find that slight changes in M(p2) on the domain 1 . p . 3 GeV have a
striking effect on the GE/GM proton form factor ratio

strong indication that position of a zero is very sensitive to underlying dynamics
and the nature of the transition from nonperturbative to perturbative QCD

Zero in GE = F1 − Q2

4M2
N
F2 largely determined by evolution of Q2 F2

F2 is sensitive to DCSB through the dynamically generated quark anomalous
electromagnetic moment – vanishes in perturbative limit
the quicker the perturbative regime is reached the quicker F2 → 0

[I. C. Cloët, C. D. Roberts and A. W. Thomas, Phys. Rev. Lett. 111, 101803 (2013)]
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Flavour separated proton form factors
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Prima facie, these experimental results are remarkable
u and d quark sector form factors have very different scaling behaviour

However, when viewed in context of diquark correlations
results are straightforward to understand

in proton (uud) the d quark is much more likely to be
in a scalar diquark [ud] than a u quark; diquark =⇒ 1/Q2

Zero in F d1p a result of interference between scalar and axial-vector diquarks
location of zero indicates relative strengths – correlated with d/u ratio as x→ 1

[I. C. Cloët, W. Bentz, A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
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Nucleon to Resonance Transitions
Given the challenges posed by non-perturbative QCD it is insufficient to
study hadron ground-states alone

Nucleon transition form factors provide a critical extension to elastic form
factors – providing more windows into and different perspectives on
quark-gluon dynamics

e.g. nucleon resonances are more sensitive to long-range effects in QCD than the
properties of ground states . . . analogous to exotic and hybrid mesons

Important example is N → ∆ transition – parametrized by three form factors

G∗E(Q2), G∗M (Q2), G∗C(Q2)

if both N and ∆ were purely S-wave then G∗E(Q2) = 0 = G∗C(Q2)

When analyzing the N → ∆ transition
it is common to construct the ratios:

REM = −G
∗
E

G∗M
, RSM = − |q|

2M∆

G∗C
G∗M

ℓ

q

k

k′

pN N

π

∆

θ
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N → ∆ form factors from the DSEs

For RSM = − |q|
2M∆

G∗C
G∗M

DSEs reproduces rapid fall off with Q2

Find that REM = − G∗E
G∗M

is a particular sensitive measure of quark orbital
angular momentum within the nucleon and ∆

At large Q2 helicity conservation demands: RSM → constant, REM → 1

however these asymptotic results are not reached until incredibility large Q2 –
which will not be accessible at any present or foreseeable facility

Comparison with Argonne-Osaka results suggest that the pion cloud is
masking expected zero in REM

[J. Segovia, I. C. Cloët, C. D. Roberts and S. M. Schmidt, Few Body Syst. 57, (2014)]
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N → ∆ magnetic form factor

Results are indistinguishable from
data for Q2 & 0.7 GeV2

With same set of inputs provide
a unified description of nucleon,
Delta and N → ∆ form factors

For example, same

quark propagators
diquark masses and amplitudes
Faddeev kernel
electromagnetic current operator

table of contents HUGS 2015 28 / 33



Roper Resonance

[H. Kamano, et al., Phys. Rev. C 88, no. 3, 035209 (2013)]

Three poles, each seeded by
a single dressed quark core:

Two poles associated with
Roper resonance and the

third with the next higher P11

resonance

The Excited Baryon Analysis Center (EBAC), resolved a fifty-year puzzle by
demonstrating that the Roper resonance is the proton’s first radial excitation

its lower-than-expected mass owes to a dressed-quark core shielded by a dense
cloud of pions and other mesons

[Decadal Report on Nuclear Physics: Exploring the Heart of Matter]
table of contents HUGS 2015 29 / 33



Roper Resonance from the DSEs
[J. Segovia, B. El-Bennich, E. Rojas, I. C. Cloët, C. D. Roberts, S. S. Xu and H. S. Zong, arXiv:1504.04386 [nucl-th]]

The Faddeev equation that produces the nucleon also gives its excited states
amplitudes for the lightest excited state typically possess a zero

therefore lightest nucleon excited state is a radial excitation⇐⇒ Roper resonance

“quark core” mass: MR = 1.73 GeV; c.f. Argonne-Osaka group MR = 1.76 GeV

Now have a unified description of the nucleon, Delta and Roper baryons

Find e.g. that the Roper charge radius is 80% larger than the nucleon’s

Nucleon wave function Roper wave function
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Nucleon and Roper Form Factors

ℓ

q

k

k′

pN, N∗
p′

N, N∗

θ

Recall that the nucleon electromagnetic
current has the form

〈Jµ〉 = uN (p′)

[
γµ F1N +

iσµνqν
2MN

F2N

]
uN (p)

The Roper [N∗(1440)] is likely the first
radial excitation of the nucleon and has the same quantum numbers

Therefore the Roper electromagnetic current has the form

〈Jµ〉 = uN∗(p
′)
[
γµ F1N∗(Q

2) + iσµνqν
2M∗N

F2N∗(Q
2)
]
uN∗(p)

The electromagnetic current can cause a transition between the nucleon and
Roper: [N → N∗]

Gauge invariance implies this transition current must satisfy: qµ Jµ = 0

〈Jµ〉 = uN∗(p
′)

[(
γµ − qµ/q

q2

)
F1NR(Q2) +

iσµνqν
MN +MN∗

F2NR(Q2)

]
uN (p)

orthogonality of the N and N∗ wave functions implies F1NR(0) = 0
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Nucleon→ Roper transition form factors
[J. Segovia, B. El-Bennich, E. Rojas, I. C. Cloët, C. D. Roberts, S. S. Xu and H. S. Zong, arXiv:1504.04386 [nucl-th]]

Results agree well with data for Q2 & 2m2
N &

at the real photon point

However contemporary kernels just produce a
hadron’s dressed-quark core

pion cloud contributions are absent from our calculation,
however these are inferred from the deviation with data
on domain 0 < Q2 . 2m2

N pion cloud contributions
should be negative and deplete the transition form factors
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Conclusion
QCD will only be solved by deploying a diverse
array of experimental and theoretical methods

must define and solve the problems of confinement
and its relationship with DCSB

These are two of the most important challenges
in fundamental Science

Nucleon elastic and transition form factors provide
an important avenue with which to address these critical questions

We have provided a unified treatment of the nucleon, Delta and Roper elastic
and transition form factors

demonstrating e.g. that the location of zero’s in form factors – e.g. GEp, F d1p –
provide tight constraints on QCD dynamics

Continuum-QCD approaches are essential; are at the forefront of guiding
experiment & provide rapid feedback; building intuition & understanding
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