QCD structure of the nucleon and spin physics Lecture 4: operator analysis

Zhongbo Kang Los Alamos National Laboratory

HUGS 2015, Jefferson Lab June 3, 2015

High energy physics and hadron physics

 We are looking into both the partonic dynamics at the short distance, as well as the nucleon structure at long distance

QCD Factorization

How many distributions are needed

In order to fully characterize the proton structure, how many parton distribution functions are actually needed

Good textbooks

- Understand C, P, T discrete symmetry properties of the correlation function
 - Most textbooks on quantum field theory will give discussion (somewhat limited) on this topic, such as Peskin, Sterman
 - If you want extensive discussion, see this book

One example: Sivers function

 Sivers function: an asymmetric parton distribution in a transversely polarized nucleon (kt correlated with the spin of the nucleon)

$$f_{q/h^{\uparrow}}(x, \mathbf{k}_{\perp}, \vec{S}) \equiv f_{q/h}(x, k_{\perp}) - \frac{1}{M} f_{1T}^{\perp q}(x, k_{\perp}) \vec{S} \cdot (\hat{p} \times \mathbf{k}_{\perp})$$

$$f_{1T}(x, k_{\perp}) \vec{S} \cdot (\hat{p} \times \mathbf{k}_{\perp})$$
Spin-independent
Spin-dependent

 Naïve time-reversal-odd, and its existence requires a phase (generate through interactions)

The history of Sivers function

1990: Sivers function

- introduce kt dependence of PDFs, generate the SSA through a correlation between the hadron spin and the parton kt
- 1993: Collins
 - show Sivers function vanishes due to time-reversal invariance

2002: Brodsky, Hwang, Schmidt

- explicit model calculation show the existence of the Sivers function
- the existence of Sivers function relies on the initial- and final-state interactions between the active parton and the remnant of the polarized hadron

2002: Ji, Yuan, Belitsky

- the initial- and final-state interaction presented by Brodsky, et.al. is equivalent to the color gauge links in the definition of the TMD distribution functions
- since the details of the initial- and final-state interaction depend on the specific scattering process, the gauge link thus the Sivers function could be processdependent

define operation Uc. Up. UT are the operation operator for C, P.T.

· P operation

T operation

.

$$T \text{ in Variance}; \qquad |\alpha_{T}\rangle = U_{T}|\alpha\rangle \implies \langle \alpha|\beta\rangle = \langle \beta_{T}|\alpha_{T}\rangle$$

$$U_{T} \psi(x_{0}, \vec{x}) U_{T}^{-1} = J^{+} \psi(-x_{0}, \vec{x})$$

$$J^{+} = J = J^{-1} = i \forall \forall \forall^{3}$$

$$U_{T} A_{\mu}(x_{0}, \vec{x}) U_{T}^{-1} = A^{\mu}(-x_{0}, \vec{x})$$

$$J(\forall^{\mu})_{J}^{*} = \gamma_{\mu}$$

$$\chi^{\mu} = \gamma_{\mu}$$

$$V_{T} |\vec{p}, \vec{s}\rangle = |-\vec{p}, -\vec{s}\rangle$$

$$U_{T} |\vec{p}, \vec{s}\rangle = |-\vec{p}, -\vec{s}\rangle$$

$$U_{T} (c \#) V_{T}^{-1} = (c \#)^{*}$$

$$F^{\mu\nu} = C_{\mu\nu}$$

• C operation
U_c
$$= U_c^{-1}$$

U_c $= U_{x_0, \vec{x}} U_c^{-1} = -\psi(x_0, \vec{x}) J_c^{-1}$
U_c $= J_c^{+} = J_c^{+} = J_c^{-1} = J_c^{-1}$
U_c $= U_{x_0, \vec{x}} U_c^{-1} = -\psi(x_0, \vec{x})$
U_c $= J_c^{+} = J_c^{+} = J_c^{-1} = -J_c$
U_c $= U_{x_0, \vec{x}} U_c^{-1} = -J_c$
U_c $= J_c^{+} = J_c^{+} = -J_c$
U_c $= A_{\mu}(x_0, \vec{x})$
U_c $= A_{\mu}(x_0, \vec{x})$
U_c $= A_{\mu}(x_0, \vec{x})$
U_c $= A_{\mu}(x_0, \vec{x})$
(the operation of charge conjugation
reversos particle and anti particle states,
while leaving spins and momenta unchanged

How many correlation function / parton distribution function do use need to charactorize the structure of a spin-1/2 proton ?

- · generic two-quark correlation function to characterize the nucleon structure · So far in momentum space
- · IN Coordinate space we have

$$\hat{\Psi}_{1j}(\kappa, P, s) = \int \frac{d^{4}i}{(2\pi)^{4}} e^{i\kappa \cdot i} \langle Ps| \overline{\Psi}_{j}(o) \Psi_{i}(i) | Ps \rangle$$

- NOTE: In general we also need gauge link to render the above definition gauge invariant, we'll talk about that later
- Q: how is \$\$ related to the parton distribution function, as well as many other quantities like transversity, Sivers function, etc ?

τ.	proceed,	letis	study	what	Vequivements	90	ωe	have for	om QCD'
----	----------	-------	-------	------	--------------	----	----	----------	---------

· Hermiticity

$$\Phi_{(k,b)}(k,b) = \Lambda_{0} \Phi_{(k,b)} \Lambda_{0}$$

· Parity

$$\Phi(\kappa, P, s) = \chi_{o} \Phi(\kappa, P, -\bar{s}) \chi_{o}$$

· Time reversal

$$\Phi^*(\kappa, \rho, s) = (-i \lambda^5 C) \Phi(\overline{\kappa}, \overline{\rho}, \overline{s}) (-i \lambda^5 C)$$

where $C = i \delta^2 \delta^\circ$, $-i \delta^5 C = i \delta' \delta^3$, and $\overline{K} = (K^\circ, -\overline{K})$

CP violation by Branco, Lavoura, Silva

· Hermiticity

$$= \frac{1}{(2\pi)^4} \int d^4 \xi \, e^{-i\kappa \cdot \xi} \, \langle PS| \, \overline{\Psi}_{\ell'}(\xi) \, \mathcal{V}_{\ell'j}^{\circ} \, \mathcal{V}_{ie}^{\circ} \, \Psi_{\ell}(0) \, |PS\rangle$$

Change variable
$$\xi \rightarrow -\xi$$

 $d^{4}\xi = d^{4}(-\xi)$

translational invariance

$$\begin{aligned}
\downarrow & \langle PS| \overline{\Psi}(-2) \cdots \Psi(0) | PS \rangle = \langle PS| \overline{\Psi}(0) \cdots \Psi(2) | PS \rangle \\
&= \frac{1}{(2\pi)^4} \int d^4 z \ e^{i\kappa \cdot z} \langle PS| \overline{\Psi}_{z'}(0) \forall_{u_j}^\circ \forall_{u_j}^\circ \Psi_{z}(2) | PS \rangle \\
&= \forall_{ie}^\circ \overline{\Phi}_{ee'} \forall_{u_j}^\circ = [\forall_{u_j}^\circ \overline{\Phi} \forall_{u_j}^\circ]_{ij} \\
\underbrace{\Phi^{\dagger}(\kappa, P, S)}_{ie} = \forall_{u_j}^\circ \overline{\Phi}(\kappa, P, S) \forall_{u_j}^\circ]
\end{aligned}$$

=₽

· pavity

(1) under parity $P^{\mu} \longrightarrow P_{\mu}$ $P^{\mu} = (P^{0}, \vec{P})$ $P_{\mu} = (P^{0}, -\vec{P}) \Longrightarrow \vec{P}$

- · momentum change
- · Spin does not change

$$S^{M} = (0, \vec{S}) \longrightarrow S^{M} = (0, \vec{S})$$

Use notation $\overline{S} \Rightarrow S_{\mu} = (0, -\vec{S})$
 $-\overline{S} = (0, \vec{S})$

NOTE:
$$k \cdot \ell = k^{\circ} \ell^{\circ} - \vec{k} \cdot \vec{\ell}$$
 $k = (k^{\circ}, \vec{k})$ $\ell = (\ell^{\circ}, \vec{\ell})$
 $\overline{k} \cdot \overline{\ell} = k^{\circ} \ell^{\circ} - \vec{k} \cdot \vec{\ell}$ $\overline{k} = (k^{\circ}, -\vec{k})$ $\overline{\ell} = (\ell^{\circ}, -\vec{\ell})$
Thus $k \cdot \ell = \overline{k} \cdot \overline{\ell}$

anti-unitary operator

$$\langle cd| = \langle p, s| \hat{b}^{\dagger} \Rightarrow ld \rangle = \hat{b} | p, s \rangle$$
 under time
 $| p \rangle = | p, s \rangle \Rightarrow \langle q | = \langle p, s |$
Then time-veversal invaviance indicates
 $p \Rightarrow \overline{p}$
 $z \Rightarrow \overline{z}$
 (z, \overline{z})

.

$$|\theta_T\rangle = |\overline{P}, \overline{S}\rangle \implies \langle \theta_T| = \langle \overline{P}, \overline{S}|$$

 $|\alpha_T\rangle = U_T \hat{G} U_T^{-1} |\overline{P}, \overline{S}\rangle$

Thus we have

$$\langle PSI[\overline{\Psi}_{j}(0) | \Psi_{i}(\overline{z})]^{\dagger} PS \rangle = \langle \overline{PS} | U_{T} [\overline{\Psi}_{j}(0) | \Psi_{i}(\overline{z})] | U_{T}^{-1} | \overline{PS} \rangle$$

NOTE:

$$\begin{split} \overline{D}_{ij}^{*}(k, P, S) &= \frac{1}{(2\pi)^{4}} \int d^{4} \xi \ e^{-ik \cdot \xi} \ \langle PS| [\overline{\Psi}_{j}(0) \Psi_{i}(\xi)]^{\dagger} |PS\rangle \\ &= \frac{1}{(2\pi)^{4}} \int d^{4} \xi \ e^{-ik \cdot \xi} \ \langle \overline{PS}| U_{T} [\overline{\Psi}_{j}(0) \Psi_{i}(\xi)] U_{T}^{\dagger} |\overline{PS}\rangle \\ &= \frac{1}{(2\pi)^{4}} \int d^{4} \xi \ e^{-ik \cdot \xi} \ \langle \overline{PS}| U_{T} [\overline{\Psi}_{j}(0) U_{T}^{\dagger} U_{T} \Psi_{i}(\xi) U_{T}^{\dagger} |\overline{PS}\rangle \end{split}$$

$$\begin{aligned} & \cup_{\tau} \psi(i) \cup_{\tau}^{-i} = -i \, \mathcal{X}^{5} \subset \, \psi(-\overline{\xi}) \\ & = \frac{1}{(i\pi)^{4}} \int d^{4} \, i \, e^{-i \, \kappa \cdot \xi} < \overline{p} \, \overline{\xi} \, | \, \overline{\psi}_{1}^{0}(-i \, \mathcal{X}^{5} \, C) \, \mathcal{X}_{j}^{i} \, (-i \, \mathcal{X}^{5} \, C)$$

spin of proton

$$P^{\mu} = P^{+} \overline{n}^{\mu}$$

 $N^{\mu} = [0^{+}, 1, 0]$

$$P^{PM} = [P^{o}, o, o, P^{z}]$$

 $\mathcal{V}^{\pm} = \frac{1}{\sqrt{2}} \left(\mathcal{V}^{0} \pm \mathcal{V}^{2} \right)$

assume proton is moving in +2 diversion

Now perform expansion

Independent 4×4 matrix basis

$$\bar{\Phi}_{ij}(k, p, s) = \int \frac{d^{4}l}{(2\pi)^{4}} e^{ik \cdot l} (psl \, \bar{\Psi}_{i}(0) \, \Psi_{i}(l) \, lps)$$

· consider purely collinear case

In other words, integrate over K_T , K^- components and set $K^+ = \chi pt$

$$\begin{split} \bar{\Phi}_{ij}(x) &= \int d^2 \kappa_T \, d\kappa^- \, \bar{\Phi}_{ij}(\kappa, P, s) \Big|_{\kappa^+ = \times P^+} \\ &= \int \frac{d^2}{2\pi} e^{i\kappa_T} \, \epsilon^{i\kappa_T} \, \langle Ps| \, \bar{\Psi}_j(o) \, \Psi_i(l) \, |PS\rangle_{l^+ = l_T = 0} \end{split}$$

In other words
$$\overline{D}_{ij}(x)$$
 should depend on P only
(as well as spin "s" vector) since $K \approx \chi P$

$$\Phi_{ij}(x, k_T) = \int dK \quad \Phi_{ij}(k, p, s) |_{k^{+}=xp^{+}}$$

$$= \int \frac{d!}{2\pi} \frac{d^{2}i_{T}}{(2\pi)^{2}} e^{ik\cdot 2} \langle ps|\Psi_{i}(0)\Psi_{i}(1)|qs\rangle_{t=0}$$

famous mistake - Sivers function Vanishes ?!

$$f_{a/ph}(x, \kappa_{\tau}, S_{\tau}) = f_{a/p}(x, \kappa_{\tau}^{2}) + \vec{S}_{\tau} \cdot (\vec{\kappa}_{\tau} \times \vec{p}) \stackrel{\perp}{\to} f_{(\tau}(x, \kappa_{\tau})$$

$$\rightarrow \int \frac{dt}{2\pi} \frac{d^2 t_T}{(2\pi)^2} e^{ik \cdot t} < PS | \overline{\Psi}(0) \frac{\chi t}{2} \Psi(t) | PS \rangle_{t=0}$$

$$f_{H}^{\perp}(x, \kappa_T) \propto f_{q/pT}(x, \kappa_T, s_T) - f_{q/pT}(x, \kappa_T, -s_T)$$

you'll find

$$f_{a/pr}(x, k_T, s_T) = f_{a/pr}(x, k_T, -s_T)$$

D Vanish ?!

= gauge link :

$$T-indevidual \rightarrow \forall \langle \alpha(\xi) = \langle \xi_{1} | \alpha_{1} e^{\gamma} \rangle$$

$$\langle \vec{r}, \vec{s} | \delta(\vec{r}, \vec{s}) = \langle -\vec{r}, -\vec{s} | U_{1} \ 0_{1} \ U_{1} \ 0_{1} \ U_{1} \$$

 $\langle \alpha | = \langle \vec{p}, \vec{s} | \hat{O}$ $| \vec{p} \rangle = | \vec{p}, \vec{s} \rangle$

$$f_{a_{k_T}}(x, k_T, \vec{s}_T) = f_{a_k}(x, k_T, -\vec{s}_T)$$

=7	Sivers	function	van i sh	<u>^</u>	1
----	--------	----------	----------	----------	---

Not Really