LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

HUGS 2015

Bolek Wyslouch

Techniques to study the plasma

Energy loss by quarks, gluons and other particles

Azimuthal asymmetry and radial expansion

Suppression of quarkonia

Energy loss by quarks, gluons and other particles

- Equivalent of x-ray of the plasma, the loss of energy can tell us about the density, composition and the microscopic structure of the plasma
- We use probes created during the elementary collisions between the initial quarks and gluons
 - Large transverse momentum quarks or gluons appearing as jets
 - Particles that do not interact strongly can be used as a reference: Z, W, photon

Probe the medium

- Goal: Understand the property of QGP
- Problem: the lifetime of QGP is so short (O(fm/c)) such that it is not feasible to probe it with an external source.
- Solution: Take the advantage of the large cross-sections of high p_T jets, γ/ W/Z, quarkonia at the LHC energy, use hard probes produced with the collision.

Three types of hard probes

↓ proton

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF)

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Parton Distribution Function (PDF) Cross-section of $2\rightarrow 2$ process

$$\sigma^{AB \to kl} \sim f_i^A(x_1, \mu_F^2) \otimes f_j^B(x_2, \mu_F^2) \otimes \hat{\sigma}^{ij \to kl}$$

Nuclear Parton Distribution Function (nPDF) Cross-section of $2\rightarrow 2$ process

One typical way is to compare PbPb data to pp reference measurement

One typical way is to compare PbPb data to pp reference measurement

 $N_{part} \rightarrow N$ umber of participating nucleons $N_{coll} \rightarrow N$ umber of binary scatterings

Example: 0_{1} $N_{part} = 2$ $N_{coll} = 1$ 0_{1} 0_{1} $N_{part} = 5$ $N_{coll} = 6$

One typical way is to compare PbPb data to pp reference measurement

One typical way is to compare PbPb data to pp reference measurement

 N_{coll} \rightarrow Averaged number of binary scattering

Questions: How do we know the Glauber model calculation of N_{coll} is correct?

Is the nuclear PDF modified with respect to nucleon PDF?

Motivates the studies of electroweak probes

Electroweak probes

- High p_T Photons, W and Z bosons:
 - •Colorless \rightarrow Not affected by the QGP
 - Good theoretical control
 - •Check the validity of N_{coll} calculation (ex. from Glauber Model)

Constraint the nuclear parton distribution function (nPDF)

nucl-ex/0701025v1

Z Production, M=M₇ 0.3 ArXiv:1010.5392 Z bosons 0.25 1.4 **Photons** proton PDF |v| < 0.51.3 EPS09 s^{1/2}=5.5 TeV 0.2 R^{γ}_{PbPb} nDS 1.2 HKN Ratio 1.1 0.15 1.0 With EPS09 nuclear effects 0.1 With no nuclear effects 0.9 PbPb 5.5 TeV ArXiv:1103.1471 σ (Pb+Pb, 2.7 TeV, y_P) 0.8 R= 0.05 ^{tot}(Pb+Pb, 2.7 TeV) 0.7 0 20 40 60 100 120 140 160 180 200 0.0 p_T [GeV] Relative uncertainty 0.9 -3 -2 -1 0 2 3 **y**_R

Photons

- Ideally: LO photons from hard scattering
- Real world: huge background from the decay and fragmentation photons
- Need a consistent definition between measurements and theoretical calculations

Isolated high p_T photons

- Solution: measurement of the isolated photons
- Decay photons from hadrons in jets such as π^0 , $\eta \rightarrow \gamma \gamma$ are largely suppressed
- UE subtracted isolation variables are developed

Isolated photon R_{AA}

• No modification of the photons as expected!

Z boson production in PbPb collisions

Z boson production in PbPb collisions

W boson

$W \rightarrow \mu \nu$ Single high $p_T \mu + Missing p_T$

W boson R_{AA}

$R_{AA}(W) = 1.04 \pm 0.07 \pm 0.12$

• Normalized yield is not varying as a function of centrality

W boson R_{AA}

• Isospin effect is seen if we differentiate W⁺ and W⁻

Summary of electroweak probes

2.5

- Electroweak probes are unmodified
- Confirmed N_{coll} scaling of hard scattering
- Constraint nuclear Parton Distribution Function

How about quarks and gluons?

Quarks and gluons in pp collisions

How about quarks and gluons?

• Want to measure quarks and gluons which carry color charge and see how they interact with QGP

Quarks and gluons

Color confinement:

Quarks and gluons \rightarrow groups of hadrons

How about quarks and gluons?

• Want to measure quarks and gluons which carry color charge and see how they interact with QGP

How about out going quarks and gluons?

- Want to measure quarks and gluons which carry color charge and see how they interact with QGP
- → Practically: measure hadrons and jets

An easier measurement: charged particle R_{AA}

Provide constraints on the parton energy loss models

Charged particle spectra

Single hadron spectra itself do not provide details of the underlying mechanism $\widehat{\mathscr{P}}$ \rightarrow Need direct jet reconstruction and correlation studies

Jet events in PbPb collisions at LHC

Jet reconstruction

Need rules to group the hadrons

A popular algorithm is anti- k_T algorithm Used in ALICE, ATLAS and CMS analyses

Radius parameter: decide the resolution scale

Cacciari, Salam, Soyez, JHEP 0804 (2008) 063

Large radius parameter → jet spliting

 $\Delta R = 0.2, 0.3, 0.4, 0.5$ are used in LHC analyses

Jet composition

On average, charged hadrons carry 65% of the jet momentum

Measure the known part Correct the rest by MC simulation

Optimize the use of calorimeter and tracker Example: "Particle Flow" in CMS

Particles

Goal:

• Make use of the redundancy of measurements from calorimeter and tracker

- \bullet Improve the sensitivity to low \textbf{p}_{T} particles in jet
- \rightarrow Reduce the dependence on MC

(ex: PYTHIA)

Underlying event background

Large underlying event from soft scattering

Need background subtraction

Summary of jet reconstruction

Remove underlying MC Simulation events contribution PYTHIA

Three possible scenarios

To explain the suppression of high p_T particles

Soft collinear radiation

Hard radiation

GLV + others

PYTHIA inspired models Modified splitting functions Large angle soft radiation "QGP heating" AdS/CFT

Inclusive jet R_{AA}, R_{CP}

Strong suppression of inclusive high p_T jets! A cone of R=0.3, 0.4 doesn't catch all the radiated energy

Correlation study: Di-jet imbalance

Correlation study: Di-jet imbalance

Parton energy loss is observed as a pronounced energy imbalance in central PbPb collisions

No apparent modification in the dijet $\Delta \phi$ distribution (Dijet pairs are still back-to-back in azimuthal angle)

Low p_T jets in PbPb collisions

Two particle correlation from ALICE: Jet like near side correlation with background subtraction Strong centrality dependence, widening of the angular correlation

2 < p_{T,trig} < 3 1 < p_{T,assoc} < 2

→ Motivates jet shape analysis and fragmentation function with low p_T particles

 \rightarrow Look at low p_T reconstructed jet

Challenge of jet as a trigger: surface bias

- Selection on a high p_T leading jet (charged particle) may bias the position of the hard scattering in the QGP

All hard collisions Can happen in any place in the QGP High p_T leading jet Triggered sample

How about correlate photons and jets?

Photon jet angular correlation

Photon-jet momentum balance

Compare photon-jet momentum balance $x_{jg} = pT^{Jet}/pT^{photon}$ in **vacuum** (pp collision) to the **QGP** (PbPb collision)

In addition, 20% of photons lose their jet

Summary

- Quarks and gluons lose a lot of energy traversing the hot nuclear medium: huge effect!
- It is transparent to W, Z, γ
- Detailed theoretical studies of "where the energy goes" and details of energy loss models are work in progress