LHC Heavy Ion Physics Lecture 6: Quarkonia and Heavy Quarks

HUGS 2015

Bolek Wyslouch

Techniques to study the plasma

Energy loss by quarks, gluons and other particles

Azimuthal asymmetry and radial expansion

Production and suppression of quarkonia

- Bound states of heavy quarks produced inside plasma are being used as an indicator of plasma temperature and density
- Comparison of production of quarkonia between ion-ion, proton-ion and proton-proton collisions show several interesting effects that can be interpreted in terms of plasma properties
 - J/ ψ , ψ ' suppression and recombination
 - Properties of Υ family

Quarkonia as a tool to probe the QGP

Different states have different binding energies Loosely bound states "melt" first!

Successive suppression of individual states provides a "thermometer" of the QGP

Flavor dependence of parton energy loss

- From QCD:
 - Color charge:

 E_{loss} in gluons > E_{loss} in quarks

Kinematics: "Dead cone effect":
 E_{loss} in quarks > E_{loss} in heavy quarks

Flavor dependence of parton energy loss

- From QCD:
 - Color charge:

 E_{loss} in gluons > E_{loss} in quarks

• Kinematics: "Dead cone effect":

 E_{loss} in quarks > E_{loss} in heavy quarks

 $b \rightarrow B$ harder than $c \rightarrow D$ harder than $q/g \rightarrow h$

Heavy Quark Physics and Anter Anter

Flavor dependence of parton energy loss

- From QCD
 - Color charge:

 E_{loss} in gluons > E_{loss} in quarks

• Kinematics: "Dead cone effect":

 E_{loss} in quarks > E_{loss} in heavy quarks

Heavy Quark vs. Light Quark: Changing the ratio of collisional and radiative energy loss

→ Determination of the elastic energy loss coefficient (\hat{e})

Heavy flavor jet and hadron analyses cover a wide kinematics range \rightarrow Suppression of induced radiation at low p_T and the disappearance of this effect at high p_T

Quarkonia production at LHC

Charmonium production non-prompt fraction 0.7 [= $CMS - \sqrt{s} = 7 \text{ TeV}$ Ŧ 0.6 L = 37 pb⁻¹ Inclusive J/Ψ 0.5 ٥ 0.4 B→J/ψ Prompt J/ψ 0.3 Direct J/ψ $\psi', \chi_C \rightarrow J/\psi$ J/ψ; 0.9 < |y| < 1.2 0.2 F JHEP 1202 (2012) 011 ψ (2S); |y| < 1.2 0.1[

5

6

7 8 9 10

20

30

40

50 60 70 80

p_T (GeV/c)

Quarkonia production at LHC

Quarkonia production at LHC

Non-prompt J/ψ

 J/ψ +1(2) tracks decay channels sample **O(0.01%)** of b cross-section

CMS Detector

Quarkonia production: Dimuons

Prompt and non-prompt J/ ψ

$J/\psi R_{AA}$ vs. centrality in PbPb collisions

CMS PAS HIN-12-014

CMS: Prompt J/ ψ

|y|<2.4 and p_T > 6.5 GeV/c

ALICE: inclusive J/ψ

- |y|<0.9 and p_T> 0
- 2.5<|y|<4.0 and p_T> 0
- Includes ~10% non-prompt
 J/ψ from b decays

$J/\psi v_2$ vs. transverse momentum

CMS observed non-zero prompt J/ ψ v₂ in PbPb collisions At high p_T: related to path length dependent energy loss Smaller than inclusive hadron v₂

20

CMS PAS HIN-12-001

Ψ(2S) / J/Ψ Double Ratio

in central PbPb collisions

PRL 113 (2014) 262301

Quarkonia production: Dimuons

Upsilons in PbPb collisions

Upsilons in PbPb collisions

Events / (0.1 GeV/c²) ₹ ≌1.4 CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV data CMS PbPb $\sqrt{s_{NN}}$ = 2.76 TeV PbPb fit Cent. 0-100%, |y| < 2.4 Υ(1S) Υ(2S) $L_{int} = 150 \,\mu b^{-1}$ pp shape CMS data CMS data $p_{\tau}^{\mu} > 4 \text{ GeV/c}$ 1.2 Primordial Primordial Regenerated Regenerated Total Total 400 Nuc. Abs. 0.8 300 200 0.6 100 0.4 ዓ 8 9 10 13 11 12 14 Mass(µ⁺µ⁻) [GeV/c²] 0.2 Y(2S)+Y(3S) 11% Direct Xb(2P) 51% 11% 0 50 300 350 100 200 250 400 150 N_{part} 0-100% R_{AA} (Y(3S)) <0.1 (at 95% C.L) Sequential suppression of the three states Xb(1P) 27% in order of their binding energy

PRL 109 (2012) 222301

Suppression of the five quarkonia in PbPb collisions

- The suppression of 5 quarkonia was observed in PbPb
 - Well-ordered with binding energy: Quarkonia melt in quark matter
 - Caveat: Including feed-down, recombination ...

Upsilons in pp, pPb, and PbPb

Y(2S)/Y(1S) ratios as a function of event activities

Y(2S)/Y(1S) ratio decreases as a function of event activity! (1) More associated yield with Y(1S)?

(2) Large event size (multiplicity) affects Y states?

JHEP 04 (2014) 103

(b)-jet Quenching

b-jet Production Mechanisms

sub-dominant at the LHC

At NLO:

- Excitation of sea quarks → b(b) + light dijet, w/ b(b) at beam rapidity
- Gluon splitting into b and b which can be reconstructed as a single jet

E-loss of split gluons can be different from primary b quarks

Heavy Flavor Jets

• Standard flavor definition used in CMS:

 $_{\odot}$ If there is a b quark within $\Delta R{<}0.3$ from jet axis, then it's a b jet $_{\odot}$ Same for c jets, except b quarks take priority

- HF jet = HF hadron + energy in cone
 - HF hadron need not be fully reconstructed
 - b quark need not be primary (for instance g→bb), although typically assumed for e-loss calculations!

Tagging and Counting b-quark Jets

Select b-tagged jets using "Secondary Vertex Tagger"

b-jet purity:

From **template fits** to secondary vertex mass distributions using templates from PYTHIA+(HI background)

Monte Carlo simulation

CMS HIN-12-003 PRL 113, 132301 (2014)

CMS PAS HIN-14-007

PbPb b-Jet Spectra

- Efficiency corrected and resolution unfolded spectra plotted for both PbPb and pp
- b jets in PbPb is scaled by $T_{\rm AA}$
- Clear indication of b-jet suppression seen

CMS HIN-12-003 PRL 113, 132301 (2014)

b-Jet R_{AA}

Evidence of b-jet suppression in PbPb collisions

CMS HIN-12-003 PRL 113, 132301 (2014)

- Suppression favors pQCD model with stronger jet-medium coupling
- Are there cold nuclear effects contributing to the observed suppression?

pPb b-jet Spectra

- b-jet spectra shown for various selections in η_{CM}
- pPb Spectra scaled by T_{pPb} to be compared to PYTHIA reference
 - Minimal suppression or enhancement is observed

CMS PAS HIN-14-007

b-jet Fraction and R_{pPb} in pPb Collisions

- Measured b-jet fraction is consistent with PYTHIA prediction
- b-jet R_{PA} is consistent with unity within the quoted systematical uncertainty
- Suppression of b-jet in PbPb collisions is not from initial / cold nuclear effects

B Meson Production in pPb Collisions at 5.02 TeV

CMS PAS HIN-14-004

Three component fit for signal extraction:

- Signal
- Combinatorial background from J/ψ-track(s)
- Non-prompt component from other
 B-meson decays that form peaking structures
 (e.g. in B⁺ analysis, bkg from B⁰ → J/ψ K^{0*})

Fully reconstructed B meson signal in heavy ion collisions!

Nuclear Modification Factors: R_{pA} FONLL

R_{pA}^{FONLL} is compatible with unity within given uncertainties for the three B-mesons

CMS PAS HIN-14-004

b-jets vs. Fully Reconstructed B Mesons

 Measurements of nuclear modification factors of b-jet and B mesons are consistent with unity over a wide p_T range

CMS PAS HIN-14-007

Flavor Dependence of Jet Quenching

Pb+Pb

Flavor Dependence of Jet Quenching

Summary

- Quarkonia production is strongly affected by the hot plasma. The pattern of suppression depends on the strength of bonding. Work to interpret it as a measure of plasma properties is in progress
- Jets containing heavy quarks can be clearly identified in collider detectors. The pattern of suppression provides important handle to energy loss calculations

Summary of the lecture series

- We discussed general ideas behind the goals of the heavy ion physics field: study of hot nuclear matter that existed about 1 microsecond after the Big Bang
- We discussed several different ways in which we try to experimentally characterize the properties of such matter
- We discussed some of the conclusions from the measurements and pointed "things to do"
- We expect new understand coming from the upcoming runs at LHC and RHIC, I hope that these lectures will help you understand the context of the results to come