QCD and hadron structure

Lecture 1: elements of factorization

M. Diehl

Deutsches Elektronen-Synchroton DESY

Jefferson Lab, June 2016

roduction	Factorization	More processes	Evolution
00	000000000000	0000	000

Two views of the nucleon:

- ▶ three quarks (spectroscopy, quark models): p = uud, n = ddu, ...
- many quarks, antiquarks, gluons (high-energy processes, L_{QCD})

How are these two pictures and the underlying concepts related?

- simple (and often quoted) picture of nucleon:
 - three quarks at low resolution scale
 - gluons and sea quarks generated by perturbative splitting

is too simple:

- PDF fits of Glück, Reya et al. require gluons and sea quarks at very low scales (< 1 GeV)
- parton densities have tails at large x not just three quarks with small relative momenta

More processes

Evolution 000

General setting

- explore and quantify how quarks, antiquarks, gluons are distributed inside nucleon ("nucleon tomography")
- essential tool: factorization to separate
 - physics at long and short distances confinement vs. asymptotic freedom
 - "structure of nucleon" and "probe"

Plan of lectures

- factorization
- generalized parton distributions (GPDs) and the transverse spatial distribution of partons more: J Roche's lectures
- transverse-momentum dependent distributions (TMDs) and the limitations of separating "structure" from "probe"

more: C Aidala's lectures

multiparton interactions in high-energy pp collisions transverse spatial distribution and correlations between partons

troduction	Factorization	More processes	Evolution
0	000000000000	0000	000

Some references for all lectures:

- more on short-distance factorization
 - J Collins, hep-ph/9907513 and hep-ph/0107252
 - J Collins, Foundations of Perturbative QCD, CUP 2011
- short overview of GPDs and TMDS MD, arXiv:1512.01328

 full bibliography for GPDs e.g. in reviews S Boffi and B Pasquini, arXiv:0711.2625
 A Belitsky and A Radyushkin, hep-ph/0504030
 MD, hep-ph/0307382
 K Goeke et al., hep-ph/0106012

- overviews of TMDs
 - A Bacchetta et al., hep-ph/0611265
 - S Mert Aybat and T Rogers, arXiv:1101.5057
 - T Rogers, arXiv:1509.04766
- multiparton interactions
 - MD, summer school lectures (2014)

https://indico.in2p3.fr/event/9917/other-view?view=standard

roduction	Factorization	More processes	Evolution
00	●000000000000	0000	000

The parton model for DIS, Drell-Yan, etc.

- ▶ fast-moving hadron ≈ set of free partons with low transv. momenta
- physical cross section
 - = cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$
 - \times parton densities

Deep inelastic scattering: $\ell p \rightarrow \ell X$

Drell-Yan: $pp \to \ell^+ \ell^- X$

oduction	Factorization	More processes	Evolution
0	●000000000000	0000	000

The parton model for DIS, Drell-Yan, etc.

- ▶ fast-moving hadron ≈ set of free partons with low transv. momenta
- physical cross section
 - = cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$
 - \times parton densities

Short-distance factorization in QCD

- implement the parton-model ideas in QCD and correct them where necessary
 - identify conditions and limitations of validity (kinematics, processes, observables)
 - corrections: partons interact
 - α_s small at large scales \rightsquigarrow perturbation theory
 - ▶ definition of parton distributions in QCD derive their general properties make contact with non-perturbative methods ~> effective field theories, lattice QCD

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Example: inclusive DIS (deep inelastic scattering)

► $\sigma_{tot}(\gamma^* p \to X)$ $\xrightarrow{opt. theorem} \operatorname{Im} \mathcal{A}(\gamma^* p \to \gamma^* p)$ forward amplitude ► measure in $ep \to eX$

- ▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed $x_B = \frac{Q^2}{2p \cdot q}$
- ► Im $\mathcal{A}(\gamma^* p \to \gamma^* p) =$ hard-scattering coefficient \otimes parton distribution
 - ► hard-scattering coefficient $\sim \operatorname{Im} \mathcal{A}(\gamma^* q \to \gamma^* q)$ small print \to later
 - ▶ parton densities (PDFs): process independent also appear in $pp \rightarrow \ell^+ \ell^- X$, $\gamma^* p \rightarrow \text{jet} + X$, ...

 \rightarrow lectures of A Cooper-Sarkar

troduction	Factorization	More processes	Evolution
000	00000000000	0000	000

Example: DVCS (deeply virtual Compton scattering)

• exclusive cross section $\propto |\mathcal{A}(\gamma^* p \to \gamma p)|^2$ square of amplitude • measure in $ep \to ep\gamma$

▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed x_B and $t = (p - p')^2$

$$\blacktriangleright \ \mathcal{A}(\gamma^* p \to \gamma p) =$$

hard-scattering coefficient \otimes generalized parton distribution

- GPD depends on x, $x_B =$ momentum fraction lost by proton and on t
- hard-scattering coefficient $\sim \mathcal{A}(\gamma^* q \rightarrow \gamma q)$

troduction	Factorization	More processes	Evolution
000	00000000000	0000	000

Example: DVCS (deeply virtual Compton scattering)

• exclusive cross section $\propto |\mathcal{A}(\gamma^* p \to \gamma p)|^2$ square of amplitude • measure in $ep \to ep\gamma$

▶ Bjorken limit: $Q^2 = -q^2 \rightarrow \infty$ at fixed x_B and $t = (p - p')^2$

$$\blacktriangleright \ \mathcal{A}(\gamma^* p \to \gamma p) =$$

hard-scattering coefficient \otimes generalized parton distribution

- GPD depends on x, x_B = momentum fraction lost by proton and on t
- ▶ hard-scattering coefficient $\sim \mathcal{A}(\gamma^* q \rightarrow \gamma q)$ or $\mathcal{A}(\gamma^* q \bar{q} \rightarrow \gamma)$ both cases included in $\int dx$

roduction	Factorization	More processes	Evolution
00	000000000000	0000	000

Short-distance factorization in QCD: step by step

- specify kinematic limit choose suitable reference frame identify small and large momentum components
- establish dominant graphs and dominant loop momentum regions of these graphs
- simplify resulting expression to obtain factors for
 - short distance ↔ large virtuality ↔ parton level calculate in perturbation theory
 - long distance ↔ low virtuality transition from hadrons to partons matrix elements of quark/gluon operators

Note difference with high-energy/small x factorization

- separate dynamics according to rapidity (not virtuality) of particles
- overlap of two factorization schemes if have strong ordering in rapidity and virtuality

ntroduction	Factorization	More processes	Evolution
000	00000000000	0000	000

Light-cone coordinates ~> blackboard

Kinematics of DIS and of DVCS

 $\rightsquigarrow \mathsf{blackboard}$

Factorization from Feynman graphs

DIS and DVCS very similar, discuss in parallel

consider Bjorken limit, choose frame where

•
$$p^+ \gg p^-$$
 (proton fast right-moving)

$$\blacktriangleright q^+ \sim q^- \sim p^+$$

$$\mathbf{p}_T = \mathbf{q}_T = 0$$

- for power counting
 - large: $p^+ \sim q^+ \sim q^- \sim Q$
 - \blacktriangleright small: hadron masses, scales of non-perturbative interact. $\sim m$
 - very small: $p^- \sim m^2/Q$

small expansion parameter is m/Q

ction	Factorization	More processes	Evolution
	000000000000	0000	000

Dominant momentum regions

Libby-Sterman analysis

- in Bj limit graphs for Compton amplitude dominated by distinct momentum regions:

proof involves advanced quantum field theory methods

organize graphs into hard, collinear, and soft subgraphs

tion	Factorization	More processes	Evolution
	00000000000	0000	000

Dominant momentum regions

Libby-Sterman analysis

 $k^2 \ll Q^2$

- in Bj limit graphs for Compton amplitude dominated by distinct momentum regions:
 - $\begin{aligned} k^2 &\sim Q^2 \\ k^2 &\sim m^2 \end{aligned}$ $k^+ \sim k^- \sim k_T \sim Q.$ ► hard:
 - collinear (to proton): $k^+ \sim Q$, $k_T \sim m$, $k^- \sim m^2/Q$.
 - $k^+, k^-, k_T \ll O$. ► soft:

proof involves advanced quantum field theory methods

organize graphs into hard, collinear, and soft subgraphs

for real photon can have collinear subgraph: $k^- \sim Q, k_T \sim m, k^+ \sim m^2/Q$ "hadronic behavior of photon"

ntroduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Power counting

- power counting
 - hard subgraph $\propto Q^{\dim(H)}$
 - collinear subgraph $\propto m^{\dim(A)}$

complications from spin \rightarrow later

- collinear lines:
 - $d^4k = dk^+ dk^- d^2k_T \sim Q \times m^2/Q \times m^2 = m^4$
- soft subgraph and lines: depends on detailed size of k^μ
- leading term: smallest possible number of lines to H

in tree graphs no large k_T , but $k^+ \sim k^- \sim Q$; in loops $k_T \sim Q$

ntroduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Power counting

- power counting
 - hard subgraph $\propto Q^{\dim(H)}$
 - collinear subgraph $\propto m^{\dim(A)}$

complications from spin \rightarrow later

- collinear lines:
 - $d^4k = dk^+ dk^- d^2k_T \sim Q \times m^2/Q \times m^2 = m^4$
- soft subgraph and lines: depends on detailed size of k^{μ}
- leading term: smallest possible number of lines to H

"twist" of contribution

(sometimes called "dynamical twist")

- twist 2 \leftrightarrow leading term in Bj limit
- twist 3 \leftrightarrow down by relative factor 1/Q
- twist 4 \leftrightarrow down by relative factor $1/Q^2$

ntroduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Collinear expansion

▶ in hard graphs neglect small components of external coll. lines → Taylor expansion

$$H(k^+, k^-, k_T) = H(k^+, 0, 0) + k_T^{\mu} \left[\frac{\partial H(k^+, 0, k_T)}{\partial k_T^{\mu}} \right]_{k_T = 0} + \mathcal{O}(m^2)$$

first term ightarrow leading twist, second term ightarrow twist three, \ldots

loop integration simplifies:

 $\int d^4k \, H(k) A(k) \approx \int dk^+ \, H(k^+, 0, 0) \, \int dk^- d^2k_T \, A(k^+, k^-, k_T)$

- in hard scattering (and only there) treat incoming/outgoing partons as exactly collinear $(k_T = 0)$ and on-shell $(k^- = 0)$
- ▶ in coll. matrix element integrate over k_T and virtuality → collinear (or k_T integrated) parton densities only depend on k⁺

uction	Factorization	More processes	Evolution
	0000000000000	0000	000
	0000000000000	0000	000

Complication from spin of partons (here: quarks, similar for gluons)

- ► H and A carry spinor indices: H_{βα}A_{αβ} = tr(HA)
- use Fierz transformation $\rightsquigarrow \operatorname{tr}(\gamma_{\mu}H) \operatorname{tr}(\gamma^{\mu}A)$ etc. \rightsquigarrow blackboard

- Lorentz invariance: in proton rest frame all components of tr(γ^μA(k, p, s)), tr(γ^μγ₅A(k, p, s)), tr(σ^{μν}γ₅A(k, p, s)), ... are ~ m^{dim(A)} since k^μ, p^μ, ms^μ ~ m
- $\begin{array}{ll} \blacktriangleright \mbox{ boost to Breit frame } & \rightsquigarrow \mbox{ largest components} \\ {\rm tr}\big(\gamma^+A(k,p,s)\big), \, {\rm tr}\big(\gamma^+\gamma_5A(k,p,s)\big), \, {\rm tr}\big(\sigma^{+j}\gamma_5A(k,p,s)\big) \\ \mbox{ are } & \sim Qm^{\dim(A)-1} \\ & j=1,2 \mbox{ transverse index} \end{array}$
- in Breit frame all components of $tr(\gamma_{\mu}H), tr(\gamma_{\mu}\gamma_{5}H), \dots$ are $\sim Q^{\dim(B)}$

troduction	Factorization	More processes	Evolution
000	0000000000000	0000	000

up to power corrections have

$$\operatorname{tr}(HA) = \frac{1}{4} \left[\operatorname{tr}(\gamma^{-}H) \operatorname{tr}(\gamma^{+}A) + \operatorname{tr}(\gamma_{5}\gamma^{-}H) \operatorname{tr}(\gamma^{+}\gamma_{5}A) \right. \\ \left. + \frac{1}{2} \operatorname{tr}(i\sigma^{-j}\gamma_{5}H) \operatorname{tr}(i\sigma^{+j}\gamma_{5}A) \right]$$

▶ coll. approx.: in H replace k → k̄
with k̄⁺ = k⁺, k̄⁻ = 0, k̄_T = 0
$$\int d^4k \operatorname{tr}(HA)$$

$$= \int dk^+ \frac{1}{4} \operatorname{tr}\left[\gamma^- H(\bar{k})\right] \int dk^- d^2k_T \operatorname{tr}\left[\gamma^+ A(k)\right] + \{\operatorname{other terms}\}$$

$$= \int \frac{dk^+}{k^+} \operatorname{tr}\left[\frac{1}{2}\bar{k}^+\gamma^- H(\bar{k})\right] \times \int dk^- d^2k_T \operatorname{tr}\left[\frac{1}{2}\gamma^+ A(k)\right] + \{\operatorname{other terms}\}$$

$$= \int \frac{dx}{x} \left[\frac{1}{2}\sum_s \bar{u}(\bar{k},s)Hu(\bar{k},s)\right] \times \int dk^- d^2k_T \operatorname{tr}\left[\frac{1}{2}\gamma^+ A(k)\right] + \{\operatorname{other terms}\}$$

• $x = k^+/p^+ =$ plus-momentum fraction of parton

• unpolarized term: average H over parton polarization

oduction	Factorization	More processes	Evolution
0	000000000000000	0000	000

Definition of quark densities

> express collinear graph in terms of fields and matrix elements

$$A(k) = \int \frac{d^4z}{(2\pi)^4} e^{ikz} \tilde{A}(z), \qquad \tilde{A}(z) = \left\langle p \left| T\bar{q}(0)q(z) \right| p \right\rangle$$

momentum integration

$$\int dk^{-} d^{2}k_{T} \int \frac{d^{4}z}{(2\pi)^{4}} e^{ikz} \tilde{A}(z) = \int \frac{dz^{-}}{2\pi} e^{ik^{+}z^{-}} \tilde{A}(z) \big|_{z^{+}=0, z_{T}=0}$$

- $\rightsquigarrow~z$ on light cone
- trace over $\frac{1}{2}\gamma^+$ gives

$$\int \frac{dz^-}{2\pi} e^{ixp^+z^-} \langle p \big| \bar{q}(0) \frac{1}{2} \gamma^+ q(z^-) \big| p \rangle$$

Intr

roduction	Factorization	More processes	Evolution
00	00000000000000	0000	000

Definition of quark densities

parton distribution

f

$$\begin{split} f_1(x) &= \int \frac{dz^-}{2\pi} \, e^{ixp^+z^-} \left\langle p \left| \bar{q}(0) \frac{1}{2} \gamma^+ W(0,z^-) q(z^-) \right| p \right\rangle \\ &= \begin{cases} q(x) & \text{for } x > 0 & \text{from } b^\dagger b \\ -\bar{q}(-x) & \text{for } x < 0 & \text{from } dd^\dagger = -d^\dagger d \end{cases} \end{split}$$

b, d = annihilation operators for quarks, antiquarks q contains b and d^{\dagger} ; \bar{q} contains b^{\dagger} and d

depends on $x = k^+/p^+$ due to boost invariance

•
$$W(0, z^-) =$$
 Wilson line

$$W[0, z^{-}] = P \exp\left[-igt_a \int_0^z d\xi^- A_a^+(\xi)\right]$$

- makes product of fields gauge invariant
- reduces to 1 in light-cone gauge $A^+ = 0$
- dynamical origin → lecture on TMDs

roduction	Factorization	More processes	Evolution
00	000000000000000	0000	000

Definition of quark densities

parton distribution

f

$$\begin{split} \dot{r}_{1}(x) &= \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \left\langle p \left| \bar{q}(0) \frac{1}{2} \gamma^{+} W(0, z^{-}) q(z^{-}) \right| p \right\rangle \\ &= \begin{cases} q(x) & \text{for } x > 0 & \text{from } b^{\dagger}b \\ -\bar{q}(-x) & \text{for } x < 0 & \text{from } dd^{\dagger} = -d^{\dagger}d \end{cases} \end{split}$$

b, d = annihilation operators for quarks, antiquarks q contains b and d^{\dagger} ; \bar{q} contains b^{\dagger} and d

depends on $x = k^+/p^+$ due to boost invariance

- helicity distrib. $g_1(x)$ with $\gamma^+ \to \gamma^+ \gamma_5$
- transversity distrib. $h_1(x)$ with $\gamma^+ \rightarrow i\sigma^{+j}\gamma_5$
- ▶ alternative notation: $f_1 = q$, $g_1 = \Delta q$, $h_1 = \delta q$
- def. for GPDs: same operators, different hadron states

ntroduction	Factorization	More processes	Evolution
000	00000000000000	0000	000

Gluon densities

$$q(x) = \int \frac{dz^{-}}{2\pi} e^{ixp^{+}z^{-}} \left\langle p \left| \bar{q}(0) \frac{1}{2} \gamma^{+} W(0, z^{-}) q(z^{-}) \right| p \right\rangle$$

for gluons replace

$$\begin{split} q(x) &\to xg(x) & \Delta q(x) \to x\Delta g(x) \\ \frac{1}{2}\bar{q}\gamma^+ q \to F^{+i}F_i^+ & \frac{1}{2}\bar{q}\gamma^+\gamma_5 q \to F^{+i}\widetilde{F}_i^+ \end{split}$$

with dual field strength $\widetilde{F}^{\mu\nu}=\frac{1}{2}\epsilon^{\mu\nu\alpha\beta}\,F_{\alpha\beta}$

 \blacktriangleright understand extra factors x

$$F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{abc} A^b_\mu A^c_\nu$$

- \blacktriangleright in light-cone gauge $A^+=0$ have $F^{+i}=\partial^+A^i$
- ► compare $\frac{1}{2}\bar{q}\gamma^+q \rightarrow k^+$ with $F^{+i}F_i^{\ +} = (\partial^+A^i)^2 \rightarrow (k^+)^2$

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

- leading twist = twist two (~ 1/Q⁰): handbag graphs and their radiative corrections
- twist three ($\sim 1/Q$): graphs with extra transverse gluon from proton + subleading parts of handbag graphs

000 0000000000 0000 d0	000

 \blacktriangleright hard-scattering part of handbag graphs \rightarrow blackboard

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

hard-scattering part of handbag graphs:

$$\frac{1}{x - x_B + i\varepsilon} + \{ \text{crossed graph} \} = \text{PV} \ \frac{1}{x - x_B} - i\pi\delta(x - x_B) + \{ \text{crossed graph} \}$$

▶ for DIS:

$$\begin{split} \sigma_{\rm tot} &\propto {\rm Im}\,\mathcal{A}(\gamma^*p \to \gamma^*p) = \sum_q (ee_q)^2 \big[q(x_B) + \bar{q}(x_B)\big] \\ &+ \{ {\rm helicity \ distributions} \} + \mathcal{O}(\alpha_s) + \mathcal{O}(m/Q) \end{split}$$

no contribution from transversitiy distribution is chiral odd: σ^{+j}γ₅ = even number of Dirac matrices need another chiral odd quantity to get a contribution

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

hard-scattering part of handbag graphs:

$$\frac{1}{x - x_B + i\varepsilon} + \{ \text{crossed graph} \} = \text{PV} \ \frac{1}{x - x_B} - i\pi\delta(x - x_B) + \{ \text{crossed graph} \}$$

► for DVCS:

$$\begin{aligned} \mathcal{A}(\gamma^* p \to \gamma p) &= \sum_q (ee_q)^2 \bigg[\operatorname{PV} \int dx \, \frac{\mathsf{GPD}(x, x_B, t)}{x_B - x} + i\pi \, \mathsf{GPD}(x_B, x_B, t) \bigg] + \{ \mathsf{crossed} \} \\ &+ \{ \mathsf{helicity \ distributions} \} + \mathcal{O}(\alpha_s) + \mathcal{O}(m/Q) \end{aligned}$$

Introduction	Factorization	More processes	Evolution
000	00000000000	0000	000

Recap:

- derive factorization from analysis of Feynman graphs
- main ingredients:
 - dominance of hard, collinear or soft momenta for internal lines
 - kinematic analysis and approximations
- apply to processes totally inclusive (DIS) or totally exclusive (DVCS)
- operator definitions for parton distributions (PDFs) and their generalization to finite momentum transfer (GPDs)
- analysis yields non-trival spin dependence

ntroduction	Factorization	More processes	Evolution
000	000000000000	0000	000

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- collinear factorization if
 - integrate over q_T of photon or
 - take $q_T \gg m$ large

 $(q_T \sim m \text{ in later lecture})$

• contribution from transversity: $\delta q \times \delta \bar{q}$

Introduction	Factorization	More processes	Evolution
000	000000000000	•000	000

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- collinear factorization if
 - integrate over q_T of photon or
 - take $q_T \gg m$ large

 $(q_T \sim m \text{ in later lecture})$

- contribution from transversity: $\delta q \times \delta \bar{q}$
- soft interactions between right- and left- moving spectators power suppr. only if sum over details of hadronic final state

roduction	Factorization	More processes	Evolution
00	000000000000	0000	000

More complicated final states

- production of W, Z or other colorless particle (Higgs, etc) same treatment as Drell-Yan
- ▶ jet production in ep or pp: hard scale provided by p_T
- heavy quark production: hard scale is m_c , m_b , m_t

Int

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Fragmentation

► cross DIS
$$eh \to e + X$$
 to $e^+e^- \to \bar{h} + X$
i.e., $\gamma^*h \to X$ to $\gamma^* \to \bar{h} + X$

000 0000000000 0000 000	Introduction	Factorization	More processes	Evolution
	000	000000000000	0000	000

Fragmentation

• cross DIS $eh \rightarrow e + X$ to $e^+e^- \rightarrow \bar{h} + X$ i.e., $\gamma^*h \rightarrow X$ to $\gamma^* \rightarrow \bar{h} + X$

▶ or Drell-Yan $h_1h_2 \rightarrow \gamma^* + X$ to $\gamma^* \rightarrow \bar{h}_1\bar{h}_2 + X$

Introduction	Factorization	More processes	Evolution
000	000000000000	0000	000

Fragmentation

► cross DIS
$$eh \to e + X$$
 to $e^+e^- \to \bar{h} + X$
i.e., $\gamma^*h \to X$ to $\gamma^* \to \bar{h} + X$

▶ or SIDIS $eh_1 \rightarrow eh_2 + X$

roduction	Factorization	More processes	Evolution
00	000000000000	000●	000

Fragmentation functions

replace parton density

$$k^+ = xp^+$$

$$f(x) = \int \frac{d\xi^{-}}{4\pi} e^{i\xi^{-}p^{+}x} \langle h|\bar{q}(0)\Gamma^{+}W(0,\xi^{-})q(\xi^{-})|h\rangle$$

$$= \sum_{X} \int \frac{d\xi^{-}}{4\pi} e^{i\xi^{-}p^{+}x}$$

$$\times \sum_{X} \langle h|(\bar{q}(0)\Gamma^{+})_{\alpha}W(0,\infty)|X\rangle \langle X|W(\infty,\xi^{-})q_{\alpha}(\xi^{-})|h\rangle$$

by fragmentation function

 $p^+ = zk^+$

$$D(z) = \frac{1}{2N_c z} \int \frac{d\xi^-}{4\pi} e^{i\xi^- p^+/z} \\ \times \sum_X \langle 0 | W(\infty, \xi^-) q_\alpha(\xi^-) | \bar{h}X \rangle \langle \bar{h}X \rangle | (\bar{q}(0)\Gamma^+)_\alpha W(0, \infty) | 0 \rangle$$

troduction	Factorization	More processes	Evolution
000	000000000000	0000	000

A closer look at one-loop corrections

example: DIS

- \blacktriangleright ultraviolet divergences $(k^{\mu}
 ightarrow \infty)$ removed by standard counterterms
- ▶ soft divergences $(k^{\mu} \rightarrow 0)$ cancel in sum over graphs
- \blacktriangleright collinear div. $(k^\mu \propto p^\mu)$ do not cancel, have integrals

$$\int_0^{k_{\max}^2} \frac{dk_T^2}{k_T^2}$$

what went wrong?

troduction	Factorization	More processes	Evolution
00	000000000000	0000	000

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorization scale μ

• with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution take $k_T < \mu$

troduction	Factorization	More processes	Evolution
00	000000000000	0000	000

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorization scale μ

- ▶ with cutoff: take k_T > µ 1/µ ~ transverse resolution
- avoiding cutoffs: in $D = 4 - 2\epsilon$ dimensions subtract collinear pole $1/\epsilon$

take $k_T < \mu$

subtract ultraviolet pole $1/\epsilon$

roduction	Factorization	More processes	Evolution
00	000000000000	0000	000

Evolution

- μ dependence of parton distr's \rightarrow evolution equations
- μ dependence of parton distr's ↔ μ dependence of hard scattering physical amplitude is μ independent if calculated to all orders in α_s
- \blacktriangleright choice of μ \leftrightarrow separation of "structure" and "dynamics"

oduction	Factorization	More processes	Evolution
0	000000000000	0000	000

Evolution

Intr

- μ dependence of parton distr's \rightarrow evolution equations
- μ dependence of parton distr's $\leftrightarrow \mu$ dependence of hard scattering physical amplitude is μ independent if calculated to all orders in α_s
- \blacktriangleright choice of μ \leftrightarrow separation of "structure" and "dynamics"
- quark and gluon densities mix under evolution:

