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Introduction Factorization More processes Evolution

Two views of the nucleon:

I three quarks (spectroscopy, quark models): p = uud, n = ddu, . . .

I many quarks, antiquarks, gluons (high-energy processes, LQCD)

How are these two pictures and the underlying concepts related?

I simple (and often quoted) picture of nucleon:

• three quarks at low resolution scale
• gluons and sea quarks generated by perturbative splitting

is too simple:

• PDF fits of Glück, Reya et al. require
gluons and sea quarks at very low scales (< 1 GeV)

I parton densities have tails at large x
not just three quarks with small relative momenta
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General setting

I explore and quantify how quarks, antiquarks, gluons
are distributed inside nucleon (“nucleon tomography”)

I essential tool: factorization to separate

• physics at long and short distances
confinement vs. asymptotic freedom

• “structure of nucleon” and “probe”

Plan of lectures

I factorization

I generalized parton distributions (GPDs)
and the transverse spatial distribution of partons more: J Roche’s lectures

I transverse-momentum dependent distributions (TMDs)
and the limitations of separating “structure” from “probe”

more: C Aidala’s lectures

I multiparton interactions in high-energy pp collisions
transverse spatial distribution and correlations between partons
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Some references for all lectures:

I more on short-distance factorization
J Collins, hep-ph/9907513 and hep-ph/0107252

J Collins, Foundations of Perturbative QCD, CUP 2011

I short overview of GPDs and TMDS
MD, arXiv:1512.01328

I full bibliography for GPDs e.g. in reviews
S Boffi and B Pasquini, arXiv:0711.2625

A Belitsky and A Radyushkin, hep-ph/0504030

MD, hep-ph/0307382

K Goeke et al., hep-ph/0106012

I overviews of TMDs
A Bacchetta et al., hep-ph/0611265

S Mert Aybat and T Rogers, arXiv:1101.5057

T Rogers, arXiv:1509.04766

I multiparton interactions
MD, summer school lectures (2014)

https://indico.in2p3.fr/event/9917/other-view?view=standard
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The parton model for DIS, Drell-Yan, etc.

I fast-moving hadron
≈ set of free partons with low transv. momenta

I physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Deep inelastic scattering: `p→ `X Drell-Yan: pp→ `+`−X
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The parton model for DIS, Drell-Yan, etc.

I fast-moving hadron
≈ set of free partons with low transv. momenta

I physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Short-distance factorization in QCD

I implement the parton-model ideas in QCD
and correct them where necessary

I identify conditions and limitations of validity
(kinematics, processes, observables)

I corrections: partons interact
αs small at large scales  perturbation theory

I definition of parton distributions in QCD
derive their general properties
make contact with non-perturbative methods
 effective field theories, lattice QCD
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Example: inclusive DIS (deep inelastic scattering)

I σtot(γ
∗p→ X)

opt. theorem−→ ImA(γ∗p→ γ∗p)

forward amplitude

I measure in ep→ eX

γ*(q) γ*(q)

pp

x

I Bjorken limit: Q2 = −q2 →∞ at fixed xB = Q2

2p·q
I ImA(γ∗p→ γ∗p) =

hard-scattering coefficient ⊗ parton distribution

I hard-scattering coefficient ∼ ImA(γ∗q → γ∗q)
small print → later

I parton densities (PDFs): process independent
also appear in pp→ `+`−X, γ∗p→ jet +X, . . .

→ lectures of A Cooper-Sarkar
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Example: DVCS (deeply virtual Compton scattering)

I exclusive cross section

∝
∣∣A(γ∗p→ γp)

∣∣2
square of amplitude

I measure in ep→ epγ

γ*(q)

p’p

γ (q’)

x x − xB

I Bjorken limit: Q2 = −q2 →∞ at fixed xB and t = (p− p′)2
I A(γ∗p→ γp) =

hard-scattering coefficient ⊗ generalized parton distribution

I GPD depends on x, xB = momentum fraction lost by proton
and on t

I hard-scattering coefficient ∼ A(γ∗q → γq)
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Example: DVCS (deeply virtual Compton scattering)

I exclusive cross section

∝
∣∣A(γ∗p→ γp)

∣∣2
square of amplitude

I measure in ep→ epγ

γ*(q)

xB

p

γ (q’)

x − x

p’

I Bjorken limit: Q2 = −q2 →∞ at fixed xB and t = (p− p′)2
I A(γ∗p→ γp) =

hard-scattering coefficient ⊗ generalized parton distribution

I GPD depends on x, xB = momentum fraction lost by proton
and on t

I hard-scattering coefficient ∼ A(γ∗q → γq) or A(γ∗qq̄ → γ)

both cases included in
∫
dx

M. Diehl QCD and hadron structure 9



Introduction Factorization More processes Evolution

Short-distance factorization in QCD: step by step

I specify kinematic limit
choose suitable reference frame
identify small and large momentum components

I establish dominant graphs
and dominant loop momentum regions of these graphs

γ*(q)

p’p

γ (q’)

x x − xB

I simplify resulting expression to obtain factors for

• short distance ↔ large virtuality ↔ parton level
calculate in perturbation theory

• long distance ↔ low virtuality
transition from hadrons to partons
matrix elements of quark/gluon operators

Note difference with high-energy/small x factorization

I separate dynamics according to rapidity (not virtuality) of particles

I overlap of two factorization schemes if have strong ordering in
rapidity and virtuality
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Light-cone coordinates
 blackboard

Kinematics of DIS and of DVCS
 blackboard
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Factorization from Feynman graphs

DIS and DVCS very similar, discuss in parallel

I consider Bjorken limit, choose frame where

I p+ � p− (proton fast right-moving)
I q+ ∼ q− ∼ p+
I pT = qT = 0

I for power counting

I large: p+ ∼ q+ ∼ q− ∼ Q
I small: hadron masses, scales of non-perturbative interact. ∼ m
I very small: p− ∼ m2/Q

small expansion parameter is m/Q
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Dominant momentum regions Libby-Sterman analysis

I in Bj limit graphs for Compton amplitude dominated by distinct
momentum regions:

I hard: k+ ∼ k− ∼ kT ∼ Q, k2 ∼ Q2

I collinear (to proton): k+ ∼ Q, kT ∼ m, k− ∼ m2/Q, k2 ∼ m2

I soft: k+, k−, kT � Q, k2 � Q2

proof involves advanced quantum field theory methods

I organize graphs into hard, collinear, and soft subgraphs

H

A

S

H

A

H

A

+ +

++

+ +

++ + +

++
+ +

+− +− +− +− +− +−

I for real photon can have collinear subgraph:
k− ∼ Q, kT ∼ m, k+ ∼ m2/Q

“hadronic behavior of photon”
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Dominant momentum regions Libby-Sterman analysis

I in Bj limit graphs for Compton amplitude dominated by distinct
momentum regions:

I hard: k+ ∼ k− ∼ kT ∼ Q, k2 ∼ Q2

I collinear (to proton): k+ ∼ Q, kT ∼ m, k− ∼ m2/Q, k2 ∼ m2

I soft: k+, k−, kT � Q, k2 � Q2

proof involves advanced quantum field theory methods

I organize graphs into hard, collinear, and soft subgraphs

H

A

H

A

+ +

++

+ +

++

+− − +−
−

−

−

I for real photon can have collinear subgraph:
k− ∼ Q, kT ∼ m, k+ ∼ m2/Q

“hadronic behavior of photon”
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Power counting

I power counting

I hard subgraph ∝ Qdim(H)

I collinear subgraph ∝ mdim(A) complications from spin → later
I collinear lines:

d4k = dk+ dk− d2kT ∼ Q×m2/Q×m2 = m4

I soft subgraph and lines: depends on detailed size of kµ

I leading term: smallest possible number of lines to H

1
Q

1
Q

1
Q2

1
Q

1
Q

1
Q

1
Q

1
Q2

in tree graphs no large kT , but k+ ∼ k− ∼ Q; in loops kT ∼ Q
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Power counting

I power counting

I hard subgraph ∝ Qdim(H)

I collinear subgraph ∝ mdim(A) complications from spin → later
I collinear lines:

d4k = dk+ dk− d2kT ∼ Q×m2/Q×m2 = m4

I soft subgraph and lines: depends on detailed size of kµ

I leading term: smallest possible number of lines to H

1
Q

1
Q

1
Q2

1
Q

1
Q

1
Q

1
Q

1
Q2

I “twist” of contribution (sometimes called “dynamical twist”)

• twist 2 ↔ leading term in Bj limit
• twist 3 ↔ down by relative factor 1/Q
• twist 4 ↔ down by relative factor 1/Q2
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Collinear expansion

I in hard graphs neglect small components of external coll. lines
 Taylor expansion

H(k+, k−, kT ) = H(k+, 0, 0) + kµT

[
∂H(k+, 0, kT )

∂kµT

]
kT=0

+O(m2)

first term → leading twist, second term → twist three, . . .

I loop integration simplifies:∫
d4kH(k)A(k) ≈

∫
dk+H(k+, 0, 0)

∫
dk−d2kT A(k+, k−, kT )

I in hard scattering (and only there) treat incoming/outgoing partons as
exactly collinear (kT = 0) and on-shell (k− = 0)

I in coll. matrix element integrate over kT and virtuality
 collinear (or kT integrated) parton densities

only depend on k+
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Complication from spin of partons (here: quarks, similar for gluons)

I H and A carry spinor indices:

HβαAαβ = tr(HA)

I use Fierz transformation

 tr(γµH) tr(γµA) etc.

 blackboard

H

A

α β

I Lorentz invariance: in proton rest frame all components of

tr
(
γµA(k, p, s)

)
, tr
(
γµγ5A(k, p, s)

)
, tr
(
σµνγ5A(k, p, s)

)
, . . .

are ∼ mdim(A) since kµ, pµ,msµ ∼ m
I boost to Breit frame  largest components

tr
(
γ+A(k, p, s)

)
, tr
(
γ+γ5A(k, p, s)

)
, tr
(
σ+jγ5A(k, p, s)

)
are ∼ Qmdim(A)−1 j = 1, 2 transverse index

I in Breit frame all components of tr
(
γµH

)
, tr
(
γµγ5H

)
, . . .

are ∼ Qdim(B)
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I up to power corrections have

tr(HA) = 1
4

[
tr(γ−H) tr(γ+A) + tr(γ5γ

−H) tr(γ+γ5A)

+ 1
2

tr(iσ−jγ5H) tr(iσ+jγ5A)
]

I coll. approx.: in H replace k → k̄

with k̄+ = k+, k̄− = 0, k̄T = 0∫
d4k tr(HA)

=

∫
dk+ 1

4
tr
[
γ−H(k̄)

] ∫
dk−d2kT tr

[
γ+A(k)

]
+ {other terms}

=

∫
dk+

k+
tr
[
1
2
k̄+γ−H(k̄)

]
×
∫
dk−d2kT tr

[
1
2
γ+A(k)

]
+ {other terms}

=

∫
dx

x

[
1
2

∑
s

ū(k̄, s)Hu(k̄, s)
]
×
∫
dk−d2kT tr

[
1
2
γ+A(k)

]
+ {other terms}

• x = k+/p+ = plus-momentum fraction of parton
• unpolarized term: average H over parton polarization

M. Diehl QCD and hadron structure 19



Introduction Factorization More processes Evolution

Definition of quark densities

I express collinear graph in terms of fields and matrix elements

A(k) =
∫

d4z
(2π)4

eikz Ã(z), Ã(z) =
〈
p
∣∣T q̄(0)q(z)

∣∣p〉
I momentum integration∫

dk−d2kT
∫

d4z
(2π)4

eikz Ã(z) =
∫
dz−

2π
eik

+z−Ã(z)
∣∣
z+=0,zT=0

 z on light cone

I trace over 1
2
γ+ gives∫

dz−

2π
eixp

+z−
〈
p
∣∣ q̄(0) 1

2
γ+ q(z−)

∣∣p〉
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Definition of quark densities

I parton distribution

f1(x) =

∫
dz−

2π
eixp

+z− 〈p∣∣ q̄(0) 1
2
γ+W (0, z−)q(z−)

∣∣p〉
=

{
q(x) for x > 0 from b†b

−q̄(−x) for x < 0 from dd† = −d†d

b, d = annihilation operators for quarks, antiquarks
q contains b and d†; q̄ contains b† and d

depends on x = k+/p+ due to boost invariance

I W (0, z−) = Wilson line

W [0, z−] = P exp
[
−ig ta

z−∫
0

dξ−A+
a (ξ)

]
• makes product of fields gauge invariant
• reduces to 1 in light-cone gauge A+ = 0
• dynamical origin → lecture on TMDs
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Definition of quark densities

I parton distribution

f1(x) =

∫
dz−

2π
eixp

+z− 〈p∣∣ q̄(0) 1
2
γ+W (0, z−)q(z−)

∣∣p〉
=

{
q(x) for x > 0 from b†b

−q̄(−x) for x < 0 from dd† = −d†d

b, d = annihilation operators for quarks, antiquarks
q contains b and d†; q̄ contains b† and d

depends on x = k+/p+ due to boost invariance

I helicity distrib. g1(x) with γ+ → γ+γ5

I transversity distrib. h1(x) with γ+ → iσ+jγ5

I alternative notation: f1 = q, g1 = ∆q, h1 = δq

I def. for GPDs: same operators, different hadron states
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Gluon densities

q(x) =

∫
dz−

2π
eixp

+z− 〈p∣∣ q̄(0) 1
2
γ+W (0, z−)q(z−)

∣∣p〉

I for gluons replace

q(x)→ xg(x) ∆q(x)→ x∆g(x)

1
2
q̄γ+q → F+iFi

+ 1
2
q̄γ+γ5q → F+i F̃i

+

with dual field strength F̃µν = 1
2
εµναβFαβ

I understand extra factors x

I F aµν = ∂µA
a
ν − ∂νAaµ + gfabcAbµA

c
ν

I in light-cone gauge A+ = 0 have F+i = ∂+Ai

I compare 1
2
q̄γ+q → k+ with F+iFi

+ = (∂+Ai)2 → (k+)2
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Result for DIS and DVCS

q

k

I leading twist = twist two (∼ 1/Q0): handbag graphs
and their radiative corrections

I twist three (∼ 1/Q): graphs with extra transverse gluon from proton +
subleading parts of handbag graphs
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Result for DIS and DVCS

q

k −k

q

I hard-scattering part of handbag graphs → blackboard
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Result for DIS and DVCS

q

k −k

q

I hard-scattering part of handbag graphs:

1

x− xB + iε
+ {crossed graph} = PV

1

x− xB
− iπδ(x− xB) + {crossed graph}

I for DIS:

σtot ∝ ImA(γ∗p→ γ∗p) =
∑
q

(eeq)
2
[
q(xB) + q̄(xB)

]
+ {helicity distributions}+O(αs) +O(m/Q)

I no contribution from transversitiy distribution
is chiral odd: σ+jγ5 = even number of Dirac matrices
need another chiral odd quantity to get a contribution
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Result for DIS and DVCS

q

k −k

q

I hard-scattering part of handbag graphs:

1

x− xB + iε
+ {crossed graph} = PV

1

x− xB
− iπδ(x− xB) + {crossed graph}

I for DVCS:

A(γ∗p→ γp) =
∑
q

(eeq)
2

[
PV

∫
dx

GPD(x, xB , t)

xB − x
+ iπGPD(xB , xB , t)

]
+ {crossed}

+ {helicity distributions}+O(αs) +O(m/Q)
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Recap:

I derive factorization from analysis of Feynman graphs

I main ingredients:

• dominance of hard, collinear or soft momenta for internal lines
• kinematic analysis and approximations

I apply to processes totally inclusive (DIS) or totally exclusive (DVCS)

I operator definitions for parton distributions (PDFs)
and their generalization to finite momentum transfer (GPDs)

I analysis yields non-trival spin dependence
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From DIS to Drell-Yan

H

A

+ +

B

− −

I two collinear subgraphs for right- and for left-moving particles

I collinear factorization if

• integrate over qT of photon or

• take qT � m large (qT ∼ m in later lecture)

I contribution from transversity: δq × δq̄
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From DIS to Drell-Yan

H

A

+ +

B

− −

A

+ +

B

− −S

I two collinear subgraphs for right- and for left-moving particles

I collinear factorization if

• integrate over qT of photon or

• take qT � m large (qT ∼ m in later lecture)

I contribution from transversity: δq × δq̄
I soft interactions between right- and left- moving spectators

power suppr. only if sum over details of hadronic final state
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More complicated final states

I production of W,Z or other colorless particle (Higgs, etc)
same treatment as Drell-Yan

I jet production in ep or pp: hard scale provided by pT

I heavy quark production: hard scale is mc, mb, mt
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Fragmentation

I cross DIS eh→ e+X to e+e− → h̄+X
i.e., γ∗h→ X to γ∗ → h̄+X

H

A

H

A
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Fragmentation

I cross DIS eh→ e+X to e+e− → h̄+X
i.e., γ∗h→ X to γ∗ → h̄+X

H

A

H

A

I or Drell-Yan h1h2 → γ∗ +X to γ∗ → h̄1h̄2 +X

H

A

+ +

B

− −

H

A

+ +

B

− −
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Fragmentation

I cross DIS eh→ e+X to e+e− → h̄+X
i.e., γ∗h→ X to γ∗ → h̄+X

H

A

H

A

I or SIDIS eh1 → eh2 +X

A

H

B

+

− −

+
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Fragmentation functions

I replace parton density k+ = xp+

f(x) =

∫
dξ−

4π
eiξ

−p+x 〈h|q̄(0)Γ+W (0, ξ−)q(ξ−)|h〉

=
∑
X

∫
dξ−

4π
eiξ

−p+x

×
∑
X

〈
h
∣∣(q̄(0)Γ+)αW (0,∞)

∣∣X〉 〈X∣∣W (∞, ξ−)qα(ξ−)
∣∣h〉

by fragmentation function p+ = zk+

D(z) =
1

2Nc z

∫
dξ−

4π
eiξ

−p+/z

×
∑
X

〈
0
∣∣W (∞, ξ−)qα(ξ−)

∣∣h̄X〉 〈h̄X〉∣∣(q̄(0)Γ+)αW (0,∞)
∣∣0〉
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A closer look at one-loop corrections

I example: DIS

k k
p

I ultraviolet divergences (kµ →∞) removed by standard counterterms

I soft divergences (kµ → 0) cancel in sum over graphs

I collinear div. (kµ ∝ pµ) do not cancel, have integrals∫ k2max

0

dk2T
k2T

what went wrong?
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I hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

I must not double count  factorization scale µ

k

I with cutoff: take kT > µ
1/µ ∼ transverse resolution

take kT < µ
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I hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

I must not double count  factorization scale µ

k

I with cutoff: take kT > µ
1/µ ∼ transverse resolution

I avoiding cutoffs:
in D = 4− 2ε dimensions
subtract collinear pole 1/ε

take kT < µ

subtract ultraviolet pole 1/ε
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Evolution

I µ dependence of parton distr’s → evolution equations

I µ dependence of parton distr’s ↔ µ dependence of hard scattering
physical amplitude is µ independent if calculated to all orders in αs

I choice of µ ↔ separation of “structure” and “dynamics”

k
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Evolution

I µ dependence of parton distr’s → evolution equations

I µ dependence of parton distr’s ↔ µ dependence of hard scattering
physical amplitude is µ independent if calculated to all orders in αs

I choice of µ ↔ separation of “structure” and “dynamics”

I quark and gluon densities mix under evolution:
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