QCD and hadron structure

Lecture 1: elements of factorization

M. Diehl
Deutsches Elektronen-Synchroton DESY

Jefferson Lab, June 2016
/ HELMHOLTZ
GEMEINSCHAFT

Two views of the nucleon:

- three quarks (spectroscopy, quark models): $\quad p=u u d, n=d d u, \ldots$
- many quarks, antiquarks, gluons (high-energy processes, $\mathcal{L}_{Q C D}$)

How are these two pictures and the underlying concepts related?

- simple (and often quoted) picture of nucleon:
- three quarks at low resolution scale
- gluons and sea quarks generated by perturbative splitting

is too simple:
- PDF fits of Glück, Reya et al. require gluons and sea quarks at very low scales $(<1 \mathrm{GeV})$
- parton densities have tails at large x not just three quarks with small relative momenta

General setting

- explore and quantify how quarks, antiquarks, gluons are distributed inside nucleon ("nucleon tomography")
- essential tool: factorization to separate
- physics at long and short distances
confinement vs. asymptotic freedom
- "structure of nucleon" and "probe"

Plan of lectures

- factorization
- generalized parton distributions (GPDs) and the transverse spatial distribution of partons more: J Roche's lectures
- transverse-momentum dependent distributions (TMDs) and the limitations of separating "structure" from "probe" more: C Aidala's lectures
- multiparton interactions in high-energy $p p$ collisions transverse spatial distribution and correlations between partons

Some references for all lectures:

- more on short-distance factorization

J Collins, hep-ph/9907513 and hep-ph/0107252
J Collins, Foundations of Perturbative QCD, CUP 2011

- short overview of GPDs and TMDS

MD, arXiv:1512.01328

- full bibliography for GPDs e.g. in reviews

S Boffi and B Pasquini, arXiv:0711.2625
A Belitsky and A Radyushkin, hep-ph/0504030
MD, hep-ph/0307382
K Goeke et al., hep-ph/0106012

- overviews of TMDs

A Bacchetta et al., hep-ph/0611265
S Mert Aybat and T Rogers, arXiv:1101.5057
T Rogers, arXiv:1509.04766

- multiparton interactions

MD, summer school lectures (2014)
https://indico.in2p3.fr/event/9917/other-view?view=standard

The parton model for DIS, Drell-Yan, etc.

- fast-moving hadron
\approx set of free partons with low transv. momenta
- physical cross section
$=$ cross section for partonic process $\left(\gamma^{*} q \rightarrow q, q \bar{q} \rightarrow \gamma^{*}\right)$ \times parton densities

Deep inelastic scattering: $\ell p \rightarrow \ell X$

Drell-Yan: $p p \rightarrow \ell^{+} \ell^{-} X$

The parton model for DIS, Drell-Yan, etc.

- fast-moving hadron
\approx set of free partons with low transv. momenta
- physical cross section
$=$ cross section for partonic process $\left(\gamma^{*} q \rightarrow q, q \bar{q} \rightarrow \gamma^{*}\right)$ \times parton densities

Short-distance factorization in QCD

- implement the parton-model ideas in QCD and correct them where necessary
- identify conditions and limitations of validity (kinematics, processes, observables)
- corrections: partons interact
α_{s} small at large scales \rightsquigarrow perturbation theory
- definition of parton distributions in QCD
derive their general properties
make contact with non-perturbative methods \rightsquigarrow effective field theories, lattice QCD

Example: inclusive DIS (deep inelastic scattering)

- $\sigma_{\text {tot }}\left(\gamma^{*} p \rightarrow X\right)$
$\xrightarrow{\text { opt. theorem }} \operatorname{Im} \mathcal{A}\left(\gamma^{*} p \rightarrow \gamma^{*} p\right)$
forward amplitude
- measure in $e p \rightarrow e X$

- Bjorken limit: $Q^{2}=-q^{2} \rightarrow \infty$ at fixed $x_{B}=\frac{Q^{2}}{2 p \cdot q}$
- $\operatorname{Im} \mathcal{A}\left(\gamma^{*} p \rightarrow \gamma^{*} p\right)=$
hard-scattering coefficient \otimes parton distribution
- hard-scattering coefficient $\sim \operatorname{Im} \mathcal{A}\left(\gamma^{*} q \rightarrow \gamma^{*} q\right)$
small print \rightarrow later
- parton densities (PDFs): process independent

$$
\begin{aligned}
\text { also appear in } p p \rightarrow \ell^{+} \ell^{-} X, \gamma^{*} p \rightarrow \text { jet } & +X, \ldots \\
& \rightarrow \text { lectures of A Cooper-Sarkar }
\end{aligned}
$$

Example: DVCS (deeply virtual Compton scattering)

- exclusive cross section
$\propto\left|\mathcal{A}\left(\gamma^{*} p \rightarrow \gamma p\right)\right|^{2}$
square of amplitude
- measure in $e p \rightarrow e p \gamma$

- Bjorken limit: $Q^{2}=-q^{2} \rightarrow \infty$ at fixed x_{B} and $t=\left(p-p^{\prime}\right)^{2}$
- $\mathcal{A}\left(\gamma^{*} p \rightarrow \gamma p\right)=$ hard-scattering coefficient \otimes generalized parton distribution
- GPD depends on $x, x_{B}=$ momentum fraction lost by proton and on t
- hard-scattering coefficient $\sim \mathcal{A}\left(\gamma^{*} q \rightarrow \gamma q\right)$

Example: DVCS (deeply virtual Compton scattering)

- exclusive cross section
$\propto\left|\mathcal{A}\left(\gamma^{*} p \rightarrow \gamma p\right)\right|^{2}$
square of amplitude
- measure in $e p \rightarrow e p \gamma$

- Bjorken limit: $Q^{2}=-q^{2} \rightarrow \infty$ at fixed x_{B} and $t=\left(p-p^{\prime}\right)^{2}$
- $\mathcal{A}\left(\gamma^{*} p \rightarrow \gamma p\right)=$ hard-scattering coefficient \otimes generalized parton distribution
- GPD depends on $x, x_{B}=$ momentum fraction lost by proton and on t
- hard-scattering coefficient $\sim \mathcal{A}\left(\gamma^{*} q \rightarrow \gamma q\right)$ or $\mathcal{A}\left(\gamma^{*} q \bar{q} \rightarrow \gamma\right)$ both cases included in $\int d x$

Short-distance factorization in QCD: step by step

- specify kinematic limit choose suitable reference frame identify small and large momentum components
- establish dominant graphs
 and dominant loop momentum regions of these graphs
- simplify resulting expression to obtain factors for
- short distance \leftrightarrow large virtuality \leftrightarrow parton level calculate in perturbation theory
- long distance \leftrightarrow low virtuality transition from hadrons to partons matrix elements of quark/gluon operators

Note difference with high-energy/small x factorization

- separate dynamics according to rapidity (not virtuality) of particles
- overlap of two factorization schemes if have strong ordering in rapidity and virtuality

Light-cone coordinates
\rightsquigarrow blackboard
Kinematics of DIS and of DVCS
\rightsquigarrow blackboard

Factorization from Feynman graphs

DIS and DVCS very similar, discuss in parallel

- consider Bjorken limit, choose frame where
- $p^{+} \gg p^{-}$(proton fast right-moving)
- $q^{+} \sim q^{-} \sim p^{+}$
- $\boldsymbol{p}_{T}=\boldsymbol{q}_{T}=0$
- for power counting
- large: $p^{+} \sim q^{+} \sim q^{-} \sim Q$
- small: hadron masses, scales of non-perturbative interact. $\sim m$
- very small: $p^{-} \sim m^{2} / Q$
small expansion parameter is m / Q

Dominant momentum regions

Libby-Sterman analysis

- in Bj limit graphs for Compton amplitude dominated by distinct momentum regions:
- hard:

$$
\begin{array}{lr}
k^{+} \sim k^{-} \sim k_{T} \sim Q, & k^{2} \sim Q^{2} \\
k^{+} \sim Q, k_{T} \sim m, k^{-} \sim m^{2} / Q, & k^{2} \sim m^{2} \\
k^{+}, k^{-}, k_{T} \ll Q, & k^{2} \ll Q^{2}
\end{array}
$$

- collinear (to proton): $k^{+} \sim Q, k_{T} \sim m, k^{-} \sim m^{2} / Q$,
- soft:
proof involves advanced quantum field theory methods
- organize graphs into hard, collinear, and soft subgraphs

Dominant momentum regions

- in Bj limit graphs for Compton amplitude dominated by distinct momentum regions:
- hard: $\quad k^{+} \sim k^{-} \sim k_{T} \sim Q$,

```
k}\mp@subsup{}{}{2}~\mp@subsup{Q}{}{2
k
\(k^{2} \ll Q^{2}\)
```

- collinear (to proton): $k^{+} \sim Q, k_{T} \sim m, k^{-} \sim m^{2} / Q$,
- soft: $\quad k^{+}, k^{-}, k_{T} \ll Q$,
proof involves advanced quantum field theory methods
- organize graphs into hard, collinear, and soft subgraphs

- for real photon can have collinear subgraph:

$$
k^{-} \sim Q, k_{T} \sim m, k^{+} \sim m^{2} / Q
$$

"hadronic behavior of photon"

Power counting

- power counting
- hard subgraph $\propto Q^{\operatorname{dim}(H)}$
- collinear subgraph $\propto m^{\operatorname{dim}(A)} \quad$ complications from spin \rightarrow later
- collinear lines:
$d^{4} k=d k^{+} d k^{-} d^{2} k_{T} \sim Q \times m^{2} / Q \times m^{2}=m^{4}$
- soft subgraph and lines: depends on detailed size of k^{μ}
- leading term: smallest possible number of lines to H

in tree graphs no large k_{T}, but $k^{+} \sim k^{-} \sim Q$; in loops $k_{T} \sim Q$

Power counting

- power counting
- hard subgraph $\propto Q^{\operatorname{dim}(H)}$
- collinear subgraph $\propto m^{\operatorname{dim}(A)}$

```
complications from spin }->\mathrm{ later
```

- collinear lines:

$$
d^{4} k=d k^{+} d k^{-} d^{2} k_{T} \sim Q \times m^{2} / Q \times m^{2}=m^{4}
$$

- soft subgraph and lines: depends on detailed size of k^{μ}
- leading term: smallest possible number of lines to H

- "twist" of contribution
- twist $2 \leftrightarrow$ leading term in Bj limit
- twist $3 \leftrightarrow$ down by relative factor $1 / Q$
- twist $4 \leftrightarrow$ down by relative factor $1 / Q^{2}$

Collinear expansion

- in hard graphs neglect small components of external coll. lines \rightsquigarrow Taylor expansion

$$
H\left(k^{+}, k^{-}, k_{T}\right)=H\left(k^{+}, 0,0\right)+k_{T}^{\mu}\left[\frac{\partial H\left(k^{+}, 0, k_{T}\right)}{\partial k_{T}^{\mu}}\right]_{k_{T}=0}+\mathcal{O}\left(m^{2}\right)
$$

first term \rightarrow leading twist, second term \rightarrow twist three, \ldots

- loop integration simplifies:

$$
\int d^{4} k H(k) A(k) \approx \int d k^{+} H\left(k^{+}, 0,0\right) \int d k^{-} d^{2} k_{T} A\left(k^{+}, k^{-}, k_{T}\right)
$$

- in hard scattering (and only there) treat incoming/outgoing partons as exactly collinear $\left(k_{T}=0\right)$ and on-shell $\left(k^{-}=0\right)$
- in coll. matrix element integrate over k_{T} and virtuality \rightsquigarrow collinear (or k_{T} integrated) parton densities only depend on k^{+}

Complication from spin of partons (here: quarks, similar for gluons)

- H and A carry spinor indices:

$$
H_{\beta \alpha} A_{\alpha \beta}=\operatorname{tr}(H A)
$$

- use Fierz transformation $\rightsquigarrow \operatorname{tr}\left(\gamma_{\mu} H\right) \operatorname{tr}\left(\gamma^{\mu} A\right)$ etc.
\leadsto blackboard

- Lorentz invariance: in proton rest frame all components of

$$
\begin{aligned}
& \operatorname{tr}\left(\gamma^{\mu} A(k, p, s)\right), \operatorname{tr}\left(\gamma^{\mu} \gamma_{5} A(k, p, s)\right), \operatorname{tr}\left(\sigma^{\mu \nu} \gamma_{5} A(k, p, s)\right), \ldots \\
& \text { are } \sim m^{\operatorname{dim}(A)} \text { since } k^{\mu}, p^{\mu}, m s^{\mu} \sim m
\end{aligned}
$$

- boost to Breit frame \rightsquigarrow largest components

$$
\begin{aligned}
& \operatorname{tr}\left(\gamma^{+} A(k, p, s)\right), \operatorname{tr}\left(\gamma^{+} \gamma_{5} A(k, p, s)\right), \operatorname{tr}\left(\sigma^{+j} \gamma_{5} A(k, p, s)\right) \\
& \text { are } \sim Q m^{\operatorname{dim}(A)-1} \quad j=1,2 \text { transverse index }
\end{aligned}
$$

- in Breit frame all components of $\operatorname{tr}\left(\gamma_{\mu} H\right), \operatorname{tr}\left(\gamma_{\mu} \gamma_{5} H\right), \ldots$ are $\sim Q^{\operatorname{dim}(B)}$
- up to power corrections have

$$
\begin{aligned}
\operatorname{tr}(H A)=\frac{1}{4}[& \operatorname{tr}\left(\gamma^{-} H\right) \operatorname{tr}\left(\gamma^{+} A\right)+\operatorname{tr}\left(\gamma_{5} \gamma^{-} H\right) \operatorname{tr}\left(\gamma^{+} \gamma_{5} A\right) \\
& \left.+\frac{1}{2} \operatorname{tr}\left(i \sigma^{-j} \gamma_{5} H\right) \operatorname{tr}\left(i \sigma^{+j} \gamma_{5} A\right)\right]
\end{aligned}
$$

- coll. approx.: in H replace $k \rightarrow \bar{k}$

$$
\text { with } \bar{k}^{+}=k^{+}, \bar{k}^{-}=0, \bar{k}_{T}=0
$$

$$
\int d^{4} k \operatorname{tr}(H A)
$$

$$
=\int d k^{+} \frac{1}{4} \operatorname{tr}\left[\gamma^{-} H(\bar{k})\right] \int d k^{-} d^{2} k_{T} \operatorname{tr}\left[\gamma^{+} A(k)\right]+\{\text { other terms }\}
$$

$$
=\int \frac{d k^{+}}{k^{+}} \operatorname{tr}\left[\frac{1}{2} \bar{k}^{+} \gamma^{-} H(\bar{k})\right] \times \int d k^{-} d^{2} k_{T} \operatorname{tr}\left[\frac{1}{2} \gamma^{+} A(k)\right]+\{\text { other terms }\}
$$

$$
=\int \frac{d x}{x}\left[\frac{1}{2} \sum_{s} \bar{u}(\bar{k}, s) H u(\bar{k}, s)\right] \times \int d k^{-} d^{2} k_{T} \operatorname{tr}\left[\frac{1}{2} \gamma^{+} A(k)\right]+\{\text { other terms }\}
$$

- $x=k^{+} / p^{+}=$plus-momentum fraction of parton
- unpolarized term: average H over parton polarization

Definition of quark densities

- express collinear graph in terms of fields and matrix elements

$$
A(k)=\int \frac{d^{4} z}{(2 \pi)^{4}} e^{i k z} \tilde{A}(z), \quad \tilde{A}(z)=\langle p| T \bar{q}(0) q(z)|p\rangle
$$

- momentum integration

$$
\int d k^{-} d^{2} k_{T} \int \frac{d^{4} z}{(2 \pi)^{4}} e^{i k z} \tilde{A}(z)=\left.\int \frac{d z^{-}}{2 \pi} e^{i k^{+} z^{-}} \tilde{A}(z)\right|_{z^{+}=0, z_{T}=0}
$$

$\rightsquigarrow z$ on light cone

- trace over $\frac{1}{2} \gamma^{+}$gives

$$
\int \frac{d z^{-}}{2 \pi} e^{i x p^{+} z^{-}}\langle p| \bar{q}(0) \frac{1}{2} \gamma^{+} q\left(z^{-}\right)|p\rangle
$$

Definition of quark densities

- parton distribution

$$
\left.\begin{array}{rl}
f_{1}(x) & =\int \frac{d z^{-}}{2 \pi} e^{i x p^{+} z^{-}}\langle p| \bar{q}(0) \frac{1}{2} \gamma^{+} W\left(0, z^{-}\right) q\left(z^{-}\right)|p\rangle \\
& = \begin{cases}q(x) & \text { for } x>0 \\
-\bar{q}(-x) & \text { for } x<0\end{cases} \\
\qquad \begin{array}{rl}
\text { from } b^{\dagger} b
\end{array} \\
b, d=\text { annihilation operators for quarks, antiquarks } d d^{\dagger}=-d^{\dagger} d
\end{array}\right\} \text { contains } b \text { and } d^{\dagger} ; \bar{q} \text { contains } b^{\dagger} \text { and } d .
$$

depends on $x=k^{+} / p^{+}$due to boost invariance

- $W\left(0, z^{-}\right)=$Wilson line

$$
W\left[0, z^{-}\right]=P \exp \left[-i g t_{a} \int_{0}^{z^{-}} d \xi^{-} A_{a}^{+}(\xi)\right]
$$

- makes product of fields gauge invariant
- reduces to 1 in light-cone gauge $A^{+}=0$
- dynamical origin \rightarrow lecture on TMDs

Definition of quark densities

- parton distribution

$$
\left.\begin{array}{rl}
f_{1}(x) & =\int \frac{d z^{-}}{2 \pi} e^{i x p^{+} z^{-}}\langle p| \bar{q}(0) \frac{1}{2} \gamma^{+} W\left(0, z^{-}\right) q\left(z^{-}\right)|p\rangle \\
& = \begin{cases}q(x) & \text { for } x>0 \\
-\bar{q}(-x) & \text { for } x<0\end{cases} \\
\qquad \begin{array}{l}
\text { from } b^{\dagger} b
\end{array} \\
b, d=\text { annihilation operators for quarks, antiquarks } d d^{\dagger}=-d^{\dagger} d
\end{array}\right\} \text { contains } b \text { and } d^{\dagger} ; \bar{q} \text { contains } b^{\dagger} \text { and } d .
$$

depends on $x=k^{+} / p^{+}$due to boost invariance

- helicity distrib. $g_{1}(x)$ with $\gamma^{+} \rightarrow \gamma^{+} \gamma_{5}$
- transversity distrib. $h_{1}(x)$ with $\gamma^{+} \rightarrow i \sigma^{+j} \gamma_{5}$
- alternative notation: $f_{1}=q, g_{1}=\Delta q, h_{1}=\delta q$
- def. for GPDs: same operators, different hadron states

Gluon densities

$$
q(x)=\int \frac{d z^{-}}{2 \pi} e^{i x p^{+} z^{-}}\langle p| \bar{q}(0) \frac{1}{2} \gamma^{+} W\left(0, z^{-}\right) q\left(z^{-}\right)|p\rangle
$$

- for gluons replace

$$
\begin{aligned}
q(x) & \rightarrow x g(x) & \Delta q(x) & \rightarrow x \Delta g(x) \\
\frac{1}{2} \bar{q} \gamma^{+} q & \rightarrow F^{+i} F_{i}{ }^{+} & \frac{1}{2} \bar{q} \gamma^{+} \gamma_{5} q & \rightarrow F^{+i} \widetilde{F}_{i}^{+}
\end{aligned}
$$

with dual field strength $\widetilde{F}^{\mu \nu}=\frac{1}{2} \epsilon^{\mu \nu \alpha \beta} F_{\alpha \beta}$

- understand extra factors x
- $F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c}$
- in light-cone gauge $A^{+}=0$ have $F^{+i}=\partial^{+} A^{i}$
- compare $\frac{1}{2} \bar{q} \gamma^{+} q \rightarrow k^{+}$with $F^{+i} F_{i}^{+}=\left(\partial^{+} A^{i}\right)^{2} \rightarrow\left(k^{+}\right)^{2}$

Result for DIS and DVCS

- leading twist $=$ twist two $\left(\sim 1 / Q^{0}\right)$: handbag graphs and their radiative corrections
- twist three $(\sim 1 / Q)$: graphs with extra transverse gluon from proton + subleading parts of handbag graphs

Result for DIS and DVCS

- hard-scattering part of handbag graphs \rightarrow blackboard

Result for DIS and DVCS

- hard-scattering part of handbag graphs:

$$
\frac{1}{x-x_{B}+i \varepsilon}+\{\text { crossed graph }\}=\mathrm{PV} \frac{1}{x-x_{B}}-i \pi \delta\left(x-x_{B}\right)+\{\text { crossed graph }\}
$$

- for DIS:

$$
\begin{aligned}
\sigma_{\text {tot }} \propto \operatorname{Im} \mathcal{A}\left(\gamma^{*} p \rightarrow \gamma^{*} p\right)= & \sum_{q}\left(e e_{q}\right)^{2}\left[q\left(x_{B}\right)+\bar{q}\left(x_{B}\right)\right] \\
& +\{\text { helicity distributions }\}+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(m / Q)
\end{aligned}
$$

- no contribution from transversitiy distribution is chiral odd: $\sigma^{+j} \gamma_{5}=$ even number of Dirac matrices need another chiral odd quantity to get a contribution

Result for DIS and DVCS

- hard-scattering part of handbag graphs:

$$
\frac{1}{x-x_{B}+i \varepsilon}+\{\text { crossed graph }\}=\mathrm{PV} \frac{1}{x-x_{B}}-i \pi \delta\left(x-x_{B}\right)+\{\text { crossed graph }\}
$$

- for DVCS:

$$
\begin{aligned}
\mathcal{A}\left(\gamma^{*} p \rightarrow \gamma p\right)= & \sum_{q}\left(e e_{q}\right)^{2}\left[\mathrm{PV} \int d x \frac{\operatorname{GPD}\left(x, x_{B}, t\right)}{x_{B}-x}+i \pi \operatorname{GPD}\left(x_{B}, x_{B}, t\right)\right]+\{\text { crossed }\} \\
& +\{\text { helicity distributions }\}+\mathcal{O}\left(\alpha_{s}\right)+\mathcal{O}(m / Q)
\end{aligned}
$$

Recap:

- derive factorization from analysis of Feynman graphs
- main ingredients:
- dominance of hard, collinear or soft momenta for internal lines
- kinematic analysis and approximations
- apply to processes totally inclusive (DIS) or totally exclusive (DVCS)
- operator definitions for parton distributions (PDFs) and their generalization to finite momentum transfer (GPDs)
- analysis yields non-trival spin dependence

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- collinear factorization if
- integrate over q_{T} of photon or
- take $q_{T} \gg m$ large

$$
\left(q_{T} \sim m \text { in later lecture }\right)
$$

- contribution from transversity: $\delta q \times \delta \bar{q}$

From DIS to Drell-Yan

- two collinear subgraphs for right- and for left-moving particles
- collinear factorization if
- integrate over q_{T} of photon or
- take $q_{T} \gg m$ large
- contribution from transversity: $\delta q \times \delta \bar{q}$
- soft interactions between right- and left- moving spectators power suppr. only if sum over details of hadronic final state

More complicated final states

- production of W, Z or other colorless particle (Higgs, etc) same treatment as Drell-Yan
- jet production in $e p$ or $p p$: hard scale provided by p_{T}
- heavy quark production: hard scale is m_{c}, m_{b}, m_{t}

Fragmentation

- cross DIS $e h \rightarrow e+X$ to $e^{+} e^{-} \rightarrow \bar{h}+X$
i.e., $\gamma^{*} h \rightarrow X$ to $\gamma^{*} \rightarrow \bar{h}+X$

Fragmentation

- cross DIS $e h \rightarrow e+X$ to $e^{+} e^{-} \rightarrow \bar{h}+X$ i.e., $\gamma^{*} h \rightarrow X$ to $\gamma^{*} \rightarrow \bar{h}+X$

- or Drell-Yan $h_{1} h_{2} \rightarrow \gamma^{*}+X$ to $\gamma^{*} \rightarrow \bar{h}_{1} \bar{h}_{2}+X$

Fragmentation

- cross DIS $e h \rightarrow e+X$ to $e^{+} e^{-} \rightarrow \bar{h}+X$ i.e., $\gamma^{*} h \rightarrow X$ to $\gamma^{*} \rightarrow \bar{h}+X$

- or SIDIS $e h_{1} \rightarrow e h_{2}+X$

Fragmentation functions

- replace parton density

$$
k^{+}=x p^{+}
$$

$$
\begin{aligned}
f(x)= & \int \frac{d \xi^{-}}{4 \pi} e^{i \xi^{-} p^{+} x}\langle h| \bar{q}(0) \Gamma^{+} W\left(0, \xi^{-}\right) q\left(\xi^{-}\right)|h\rangle \\
= & \sum_{X} \int \frac{d \xi^{-}}{4 \pi} e^{i \xi^{-} p^{+} x} \\
& \times \sum_{X}\langle h|\left(\bar{q}(0) \Gamma^{+}\right)_{\alpha} W(0, \infty)|X\rangle\langle X| W\left(\infty, \xi^{-}\right) q_{\alpha}\left(\xi^{-}\right)|h\rangle
\end{aligned}
$$

by fragmentation function

$$
p^{+}=z k^{+}
$$

$$
\begin{aligned}
D(z)= & \frac{1}{2 N_{c} z} \int \frac{d \xi^{-}}{4 \pi} e^{i \xi^{-} p^{+} / z} \\
& \left.\times \sum_{X}\langle 0| W\left(\infty, \xi^{-}\right) q_{\alpha}\left(\xi^{-}\right)|\bar{h} X\rangle\langle\bar{h} X\rangle\left|\left(\bar{q}(0) \Gamma^{+}\right)_{\alpha} W(0, \infty)\right| 0\right\rangle
\end{aligned}
$$

A closer look at one-loop corrections

- example: DIS

- ultraviolet divergences $\left(k^{\mu} \rightarrow \infty\right)$ removed by standard counterterms
- soft divergences $\left(k^{\mu} \rightarrow 0\right)$ cancel in sum over graphs
- collinear div. $\left(k^{\mu} \propto p^{\mu}\right)$ do not cancel, have integrals

$$
\int_{0}^{k_{\max }^{2}} \frac{d k_{T}^{2}}{k_{T}^{2}}
$$

what went wrong?

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorization scale μ

- with cutoff: take $k_{T}>\mu$
take $k_{T}<\mu$ $1 / \mu \sim$ transverse resolution
- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorization scale μ

- with cutoff: take $k_{T}>\mu$
take $k_{T}<\mu$
$1 / \mu \sim$ transverse resolution
- avoiding cutoffs:
in $D=4-2 \epsilon$ dimensions subtract collinear pole $1 / \epsilon$ subtract ultraviolet pole $1 / \epsilon$

Evolution

- μ dependence of parton distr's \rightarrow evolution equations
- μ dependence of parton distr's $\leftrightarrow \mu$ dependence of hard scattering physical amplitude is μ independent if calculated to all orders in α_{s}
- choice of $\mu \leftrightarrow$ separation of "structure" and "dynamics"

Evolution

- μ dependence of parton distr's \rightarrow evolution equations
- μ dependence of parton distr's $\leftrightarrow \mu$ dependence of hard scattering physical amplitude is μ independent if calculated to all orders in α_{s}
- choice of $\mu \leftrightarrow$ separation of "structure" and "dynamics"
- quark and gluon densities mix under evolution:

