QCD and hadron structure Lecture 3: exclusive processes and GPDs

M. Diehl

Deutsches Elektronen-Synchroton DESY

Jefferson Lab, June 2016

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

Key processes involving GPDs

deeply virtual Compton scattering (DVCS)

also: $\gamma p \to \gamma^* p$ with $\gamma^* \to \ell^+ \ell^-$ (timelike CS) $\gamma^* p \to \gamma^* p$ (double DVCS)

• meson production: large Q^2 or heavy quarks

Helicity selection rules

- selection of helcities in hard-scattering part
- ingredients: conservation of angular mom. and of chirality
 - scattering collinear \rightarrow ang. mom. $J^z =$ sum of helicities
 - chirality conserved by quark-gluon and quark-photon coupling

chirality	+1	$^{-1}$
q helicity	+1/2	-1/2
$ar{q}$ helicity	-1/2	+1/2

light meson production (not J/Ψ or Υ)

(analogous argument for graphs with gluon GPD)

Helicity selection rules

- selection of helcities in hard-scattering part
- ingredients: conservation of angular mom. and of chirality
 - scattering collinear \rightarrow ang. mom. $J^z =$ sum of helicities
 - chirality conserved by quark-gluon and quark-photon coupling

chirality	+1	-1
q helicity	+1/2	-1/2
$ar{q}$ helicity	-1/2	+1/2

light meson production (not J/Ψ or Υ)

(analogous argument for graphs with gluon GPD)

• dominant transition: $\mathcal{A}(\gamma_L^* \to \text{meson}_L) \sim 1/Q$

Helicity selection rules

- selection of helcities in hard-scattering part
- ingredients: conservation of angular mom. and of chirality
 - scattering collinear \rightarrow ang. mom. $J^z =$ sum of helicities
 - chirality conserved by quark-gluon and quark-photon coupling

chirality	+1	-1
q helicity	+1/2	-1/2
$ar{q}$ helicity	-1/2	+1/2

light meson production (not J/Ψ or Υ)

(analogous argument for graphs with gluon GPD)

• $\mathcal{A}(\gamma_T^* \to V_T) \sim 1/Q^2$, but sizeable at $Q^2 \sim \text{few GeV}^2$ ($\rho \text{ and } \phi \text{ data}$) can describe phenomenologically by keeping k_T finite in hard scattering

Helicity	DVCS	$ep \rightarrow ep\gamma$
0	00000	0000000

city	DVCS	$ep \rightarrow ep\gamma$
	00000	0000000

▶ leading transition: $T \to T$

Heli O

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

- leading transition: $T \to T$
- if both photons virtual: also L → L (in DIS: correction to Callan-Gross relation)

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

- leading transition: $T \to T$
- if both photons virtual: also L → L (in DIS: correction to Callan-Gross relation)

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

- leading transition: $T \to T$
- if both photons virtual: also L → L (in DIS: correction to Callan-Gross relation)
- $L \to T$ at twist-three level ($\propto 1/Q$)

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

- leading transition: $T \to T$
- if both photons virtual: also L → L (in DIS: correction to Callan-Gross relation)
- $L \to T$ at twist-three level ($\propto 1/Q$)

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

- leading transition: $T \to T$
- if both photons virtual: also L → L
 (in DIS: correction to Callan-Gross relation)
- $L \to T$ at twist-three level $(\propto 1/Q)$
- double helicity flip in $T \rightarrow T$ at twist-two with gluons

DVCS amplitudes and GPDs

- twist-two amplitudes involve 4 four GPDs per parton
 - *H*, *E*: unpolarized quark/gluon
 - \tilde{H}, \tilde{E} : long. pol. quark/gluon
- twist-three amplitudes:
 - Wandzura-Wilczek part involves same four twist-two GPDs calculated up to NLO
 - genuine twist-three part: matrix elements of $\bar{q} G^{\mu\nu} q$ largely unknown
- photon double helicity-flip amplitudes:
 - at twist two with gluon helicity-flip GPDs, $\mathcal{A} \propto \alpha_s$ distributions very unknown
 - at twist four $\propto 1/Q^2$ start at tree level Wandzura-Wilczek part with usual quark GPDs calculated

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

DVCS form factors

▶ for photon helicity conserving amplitudes write

$$e^{-2}\mathcal{A}(\gamma^* p \to \gamma p) = \bar{u}(p')\gamma^+ u(p) \mathcal{H} + \bar{u}(p') \frac{i}{2m_p} \sigma^{+\alpha}(p'-p)_{\alpha} u(p) \mathcal{E}$$
$$+ \bar{u}(p')\gamma^+ \gamma_5 u(p) \widetilde{\mathcal{H}} + \bar{u}(p') \frac{(p'-p)^+}{2m_p} \gamma_5 u(p) \widetilde{\mathcal{E}}$$

- Compton form factors $\mathcal{H}, \mathcal{E}, \widetilde{\mathcal{H}}, \widetilde{\mathcal{E}}$ depend on ξ, t, Q^2
- representation holds for any Q^2 , not only at twist two

• at leading twist and LO in α_s

$$\mathcal{H} = \sum_{q} e_q^2 \int_{-1}^{1} dx \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right] H^q(x, \xi, t)$$

same kernels for E, different set for $\widetilde{H}, \widetilde{E}$

D\	VCS	$ep \rightarrow ep\gamma$
0	0000	0000000

Aside: imaginary and absorptive part

• scattering matrix
$$S: |X\rangle_{in} = S|X\rangle_{out}$$

 \rightsquigarrow transition amplitude $_{\rm out}\langle f|i\rangle_{\rm in} = _{\rm out}\langle f|\mathcal{S}|i\rangle_{\rm out}$

•
$$S$$
 is unitary: $S^{\dagger}S = 1$

 \rightarrow blackboard

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

Aside: imaginary and absorptive part

- scattering matrix $S: |X\rangle_{in} = S|X\rangle_{out}$
 - \rightsquigarrow transition amplitude $_{
 m out}\langle f|i
 angle_{
 m in} = _{
 m out}\langle f|\mathcal{S}|i
 angle_{
 m out}$

•
$$S$$
 is unitary: $S^{\dagger}S = 1$

 \rightarrow blackboard

- $$\begin{split} \blacktriangleright \ \mathcal{S} = 1 + i\mathcal{T} \quad \dots \text{ leave out factors } 2\pi \text{ etc.} \\ \mathcal{S} \text{ unitary} \Rightarrow \frac{1}{i}(\mathcal{T} \mathcal{T}^{\dagger}) = \mathcal{T}^{\dagger}\mathcal{T} \end{split}$$
- ► absorptive part: $\frac{1}{i}\langle f|T T^{\dagger}|i\rangle = \sum_{X}\langle f|T^{\dagger}|X\rangle\langle X|T|i\rangle$ on-shell intermediate states possible between *i* and *f* in simple cases and with appropriate phase conventions:

absorptive part $= 2 \times \text{ imaginary part of amplitude}$

▶ for f = i get optical theorem

$$2 \operatorname{Im}\langle i | \mathcal{T} | i \rangle = \sum_{X} \left| \langle X | \mathcal{T} | i \rangle \right|^{2} \propto \sigma_{tot}$$

elicity	DVCS	$ep \rightarrow ep\gamma$
0	00000	0000000

Real and imaginary part for brevity suppress $\sum_{q} e_q^2$ and arguments t, Q^2

$$\mathcal{H}(\xi) = \int_{-1}^{1} dx \, H(x,\xi) \left[\frac{1}{\xi - x - i\varepsilon} - \frac{1}{\xi + x - i\varepsilon} \right]$$

 $\operatorname{Im} \mathcal{H}(\xi) = \pi \big[H(\xi, \xi) - H(-\xi, \xi) \big]$

$$\operatorname{Re} \mathcal{H}(\xi) = \operatorname{PV} \int_{-1}^{1} dx \, H(x,\xi) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right]$$

- Im only involves H at x = ±ξ at LO at NLO and higher: only DGLAP region |x| ≥ ξ
- Re involves both DGLAP and ERBL regions
- deconvolution problem:

reconstruction of $H(x,\xi;\mu^2)$ from $\mathcal{H}(\xi,Q^2)$ only via Q^2 dep'ce i.e. via evolution effects, requires large lever arm in Q^2 at given ξ

DVCS	$ep \rightarrow ep\gamma$
00000	0000000

Why DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed
- ▶ only quark flavor combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s
- ▶ gluons only through Q² dependence via LO evolution, NLO hard scattering most promonent at small x, ξ

Why not only DVCS?

- theoretical accuracy at NNLO
- very close to inclusive DIS power corrections empirically not too large, in part computed
- ▶ only quark flavor combination ⁴/₉u + ¹/₉d + ¹/₉s with neutron target in addition ⁴/₉d + ¹/₉u + ¹/₉s
- gluons only through Q² dependence via LO evolution, NLO hard scattering most promonent at small x, ξ
- useful to get information from meson production

• e.g.
$$\mathcal{A}_{\rho^0} \propto \frac{2}{3}(u+\bar{u}) + \frac{1}{3}(d+\bar{d}) + \frac{3}{4}g$$

 $\mathcal{A}_{\phi} \propto \frac{1}{3}(s+\bar{s}) + \frac{1}{4}g$

- but theory description more difficult meson wave function, larger corrections in 1/Q² and α_s
- $\blacktriangleright~J/\Psi$ production: directly sensitive to gluons

ity	DVCS	$ep \rightarrow ep\gamma$
	00000	000000

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

analogy with optics:

- DVCS \sim diffraction experiment
- BH \sim reference beam with known phase

Helic

y	DVCS	$ep \rightarrow ep\gamma$
	00000	000000

Deeply virtual Compton scattering

competes with Bethe-Heitler process at amplitude level

 \blacktriangleright cross section for $\ell p \to \ell \gamma p$

$$\frac{d\sigma_{\rm VCS}}{dx_B \, dQ^2 \, dt} : \frac{d\sigma_{\rm BH}}{dx_B \, dQ^2 \, dt} \sim \frac{1}{y^2} \frac{1}{Q^2} : \frac{1}{t} \qquad \qquad y = \frac{Q^2}{x_B \, s_{\ell_P}}$$

- ▶ $1/Q^2$ and 1/t from photon propagators $1/y^2$ from vertex $e \rightarrow e\gamma^*$
- small y: σ_{VCS} dominates → high-energy collisions moderate to large y: get VCS via interference with BH → separate Re A(γ*p → γp) and Im A(γ*p → γp)

Helicity	DVCS	$ep \rightarrow ep\gamma$
00	00000	000000

general structure:

- filter out interference term using cross section dependence on
 - beam charge e_l
 - \blacktriangleright azimuth ϕ
 - beam polarization P_{ℓ}
 - target polarizaton S_L , S_T , ϕ_S

 $d\sigma(\ell p \rightarrow \ell \gamma p) \sim d\sigma^{^{BH}} + \underline{\mathbf{e}_{\ell}} \, d\sigma^{^{I}} + d\sigma^{^{C}}$

DVCS 00000	$\begin{array}{c} ep \rightarrow ep\gamma \\ 00 \bullet 0000 \end{array}$

in more detail:

$$\begin{split} d\sigma(\ell p \to \ell \gamma p) \sim d\sigma_{UU}^{BH} + e_{\ell} \, d\sigma_{UU}^{I} + d\sigma_{UU}^{C} \\ &+ e_{\ell} P_{\ell} \, d\sigma_{LU}^{I} + P_{\ell} \, d\sigma_{LU}^{C} \\ &+ e_{\ell} S_{L} \, d\sigma_{UL}^{I} + S_{L} \, d\sigma_{UL}^{C} \\ &+ e_{\ell} S_{T} \, d\sigma_{UT}^{I} + S_{T} \, d\sigma_{UT}^{C} \\ &+ P_{\ell} S_{L} \, d\sigma_{LL}^{BH} + e_{\ell} P_{\ell} S_{L} \, d\sigma_{LL}^{I} + P_{\ell} S_{L} \, d\sigma_{LL}^{C} \\ &+ P_{\ell} S_{T} \, d\sigma_{LT}^{BH} + e_{\ell} P_{\ell} S_{T} \, d\sigma_{LT}^{I} + P_{\ell} S_{T} \, d\sigma_{LT}^{C} \end{split}$$

with $d\sigma$ even and $d\sigma$ odd under $\phi \to -\phi, \, \phi_S \to -\phi_S$

- single spin terms LU, UL, UT
 - $d\sigma^{I} \propto \text{Im} \mathcal{A}, \quad d\sigma^{C} \propto \text{Im} (\mathcal{A}^{*}\mathcal{A}')$ $\mathcal{A}, \mathcal{A}' = \gamma^{*}p \rightarrow \gamma p$ helicity amplitudes \rightsquigarrow Compton form factors • no Bethe-Heitler contribution
- unpolarized and double spin terms UU, LL, LT
 - $d\sigma^I \propto \operatorname{Re} \mathcal{A}, \quad d\sigma^C \propto \operatorname{Re} \left(\mathcal{A}^* \mathcal{A}'\right)$

y	DVCS	$ep \rightarrow ep\gamma$
	00000	0000000

general consequence of parity and time reversal invariance

	parity P	time reversal T	PT
spin $1/2$ vector	+	_	—
momentum vector	_	_	+
azimuths ϕ , ϕ_S	_	—	+
P_ℓ , S_L	_	+	_

transformation properties

► parity inv. \rightsquigarrow single spin term odd in ϕ , ϕ_S \rightsquigarrow "time reversal odd"

► time reversal and parity inv. $\rightsquigarrow \langle f | \mathcal{T} | i \rangle = \langle i_T | \mathcal{T} | f_T \rangle = \langle i_{PT} | \mathcal{T} | f_{PT} \rangle$ $i_{PT}, f_{PT} = \text{spins reversed, momenta unchanged}$

single spin asy.
$$\propto |\langle f|\mathcal{T}|i\rangle|^2 - |\langle f_{PT}|\mathcal{T}|i_{PT}\rangle|^2$$

= $|\langle f|\mathcal{T}|i\rangle|^2 - |\langle i|\mathcal{T}|f\rangle|^2$

requires nonzero absorptive part

$$\langle f|\mathcal{T}|i\rangle - \langle i|\mathcal{T}|f\rangle^* = \langle f|\mathcal{T} - \mathcal{T}^{\dagger}|i\rangle = i\sum_X \langle f|\mathcal{T}|X\rangle \langle X|\mathcal{T}|i\rangle$$

Helicity 00	DVCS 00000	$ep \rightarrow ep\gamma$ 0000000
	$\langle f \mathcal{T} i\rangle - \langle i \mathcal{T} f\rangle^* = \langle f \mathcal{T} - \mathcal{T}^{\dagger} i\rangle = i\sum_X \langle f \mathcal{T} X\rangle \langle X \mathcal{T} i\rangle$	
	p - p - p - p - p - p - p	

- Bethe-Heitler has no absorptive part ("is purely real") absorpt. part from O(α_{em}) corrections, i.e. two-photon exchange
- single-spin asymmetries only from DVCS or from interference

Helicity	DVCS	$ep \rightarrow ep\gamma$
00	00000	0000000

The ϕ dependence

- ▶ reflects helicity structure of γ^* in DVCS process $\phi \leftrightarrow$ rotation about γ^* momentum with ang. mom. operator $L^z = -i \frac{\partial}{\partial \phi}$ have $L^z e^{-i\lambda \phi} = \lambda e^{i\lambda \phi}$
- $\blacktriangleright \mbox{ in } \sigma^I \mbox{ and } \sigma^C \mbox{ have correspondence} \\ \cos(n\phi), \sin(n\phi) \ \leftrightarrow \ \gamma^* \mbox{ helicity in } \mathcal{A}$

Helicity	DVCS	$ep \rightarrow ep\gamma$
00	00000	0000000

The ϕ dependence

► reflects helicity structure of γ^* in DVCS process $\phi \leftrightarrow$ rotation about γ^* momentum with ang. mom. operator $L^z = -i\frac{\partial}{\partial\phi}$ have $L^z e^{-i\lambda\phi} = \lambda e^{i\lambda\phi}$

► in
$$\sigma^I$$
 and σ^C have correspondence $\cos(n\phi), \sin(n\phi) \leftrightarrow \gamma^*$ helicity in \mathcal{A}

φ has no simple meaning in BH process
 variables Q², t, x_B, φ chosen to make DVCS simple
 φ dependence from Bethe-Heitler propagators known

$$s'u' = -\text{const.}\left[1 - \cos\phi \, O(\tfrac{\sqrt{t_0-t}}{Q}) + \cos(2\phi) \, O(\tfrac{t_0-t}{Q^2})\right]$$

Access to GPDs

> DVCS and meson production at LO in α_s : GPDs appear as

$$\mathcal{F} \propto \int dx \, \frac{F(x,\xi,t)}{x-\xi+i\epsilon} \pm \{\xi \to -\xi\}$$

 DVCS: many independent observables at leading twist (γ^{*}_T) in interference term can separate all 4 GPDs:

target pol.	GPD combination
U	$F_1\mathcal{H} + \xi(F_1+F_2)\tilde{\mathcal{H}} + rac{t}{4m^2}F_2\mathcal{E}$
L	$F_1 \tilde{\mathcal{H}} + \xi (F_1 + F_2) \mathcal{H} - \frac{\xi}{1+\xi} F_1 \xi \tilde{\mathcal{E}} + \dots$
$T_{\cos(\phi-\phi_S)}$	$F_2 \tilde{\mathcal{H}} - F_1 \xi \tilde{\mathcal{E}} + \dots$
$T_{\sin(\phi-\phi_S)}$	$F_2\mathcal{H} - F_1\mathcal{E} + \dots$

with unpolarized or polarized lepton beam

 $F_1, F_2 = \text{Dirac}$ and Pauli form factors at mom. transfer t

elicity 10	DVCS 00000	$\begin{array}{c} ep \rightarrow ep\gamma \\ 000000 \bullet \end{array}$

Access to GPDs

> DVCS and meson production at LO in α_s : GPDs appear as

$$\mathcal{F} \propto \int dx \, \frac{F(x,\xi,t)}{x-\xi+i\epsilon} \pm \{\xi \to -\xi\}$$

• meson production: two leading-twist observables (γ_L^*)

meson	target pol.	GPD combination
vector	U	$ \mathcal{H} ^2 - rac{t}{4m^2} \mathcal{E} ^2 - \xi^2 \mathcal{H} + \mathcal{E} ^2$
	$T_{\sin(\phi-\phi_S)}$	$\operatorname{Im}(\mathcal{E}^*\mathcal{H})$
pseudo-	U	$(1-\xi^2) \tilde{\mathcal{H}} ^2 - \tfrac{t}{4m^2}\xi^2 \tilde{\mathcal{E}} ^2 - 2\xi^2\mathrm{Re}(\tilde{\mathcal{E}}^*\tilde{\mathcal{H}})$
scalar	$T_{\sin(\phi-\phi_S)}$	$\operatorname{Im}(\xi ilde{\mathcal{E}}^* ilde{\mathcal{H}})$

with unpolarized lepton beam

note: $\operatorname{Im}(\mathcal{E}^*\mathcal{H})$ can be small even if \mathcal{E} and \mathcal{H} are large