Why the proton radius is
smaller in Virginia
(Part I - Fits of Gy)

David Meekins and Brad Sawatzky (Jefferson Lab)
Al Amin Kabir (Kent State)
Vincent Lin (Western Branch High School)
Blaine Norum (University of Virginia)
Carl Carlson & Keith Griffioen (William & Mary)

Jefferson Lab

@ Thomas Jefferson National Accelerator Facility




Retrograde Motion of Mars As Seen From Earth
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Earth vs. Sun Centered Models
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Phases & Elliptical Orbits

At first, with orbits as perfect circles, Ptolemaic models were better at
predicting the orbits of the planets then Copernican models.

[t was the phases of the Venus (Galileo 1610) along with the elliptical
orbits of Kepler (1609) [ fitting the “naked eye” data of Brahe (1574) ]
that proved to be the downfall of the Ptolemaic model.

.}efferson Lab



AND STATIONARY
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Occam's Razor

e William Occam (1287 - 1347)

e One can always explain failing explanations with an ad hoc
hypothesis, thus in Science, simpler theories are preferable to more
complex ones. (e.g. the Sun centered vs. Earth centered)

e Laymans version of Occam’s Razor is “the simplest explanation is
usually the correct one” (i.e. KISS)

 In statistical versions of Occam's Razor, one uses a rigorous
formulation instead of a philosophical argument. In particular, one
must provide a specific definition of simple:
— F test, Akaike information criterion, Bayesian information criterion, etc.

— In statistical modeling of data too simple is under-fitting and too complicated
is over-fitting.
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How many ways can YOU determine the radius of a perfect sphere?!

Image of the sphere created to test theory of relativity on the Gravity Probe B spacecraft.
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Some Answers

Diameter =2 r
Area = T r?
Volume = 4/3 nr’ (displacement of water)

Momentum of Inertia
—2/5 m r? (solid sphere)
— 2/3 m r? (hollow sphere)
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All Models Are Wrong

“The most that can be expected from any model is that it can supply
a useful approximation to reality: All models are wrong; some

models are useful.” - George Box (1919 — 2013)

“An ever increasing amount of computational
work is being relegated to computers, and often
we almost blindly assume that the obtained
results are correct.”

- Simon Sirca & Martin Horvat

Simon Sirca
Martin Horvat

Computational
Methods for

Physicists

Compendium for Students
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Charge Radii from Electron Scattering

e For heavy nuclei, one typically measures the charge form factor, G;(Q?), and with a
Fourier transformation finds the charge radius.

» Diffractive minima also help determine radius and for a perfectly homogeneous
sphere the minima would determine the radius exactly.

pir) — |Flg<)| Example

pointlike constant Elactron

\
@\emial Qle Proton
gauss { SLi
homogeneous
Sphere \oicmaig\ ;
sphere with
a diffuse e %0
surface oscillating b 0 |

r —» Tqu;b
Textbook example from Povh, Rith, Scholz, Zetsche, Particles and Nuclei 2" Edition (1999) Springer.

/
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Determining the Charge Radius of Carbon

Stanford high Q? data from I. Sick and J.S. McCarthy, Nucl. Phys. A150 (1970) 631.
National Bureau of Standards (NBS) low Q? data from L. Cardman et. al., Phys. Lett. B91 (1980) 203.
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See the L. Cardman’s paper for details of the carbon radius ( 2.46 fm ) analysis.
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Proton Radius Puzzle

e There are currently only a few ways to determine the
radius of the proton:

— Atomic Hydrogen Lamb Shift ( ~ 0.88 fm )
— Muonic Hydrogen Lamb Shift ( ~ 0.84 fm)
— And of course elastic electron scattering!

* New measurements are coming!
— Prad: electron scattering (going on right now)
— NIST & other labs: Atomic Hydrogen Lamb Shift

e My focus today will be on the electron scattering
data.
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Elastic Scattering on a Proton

From relativistic quantum mechanics one can derive the the formula electron-proton
scattering where one has assumed the exchange of a single virtual photon.

do (do .E'

2 2
G, +7G,,

do \dQ).,. E

1+7

+27G;, tan’

where G; and G, form factors take into account the finite size of the proton.

Ge = Ge(Q?), Gy = Gy, (Q%); Gg(0)=1, Gy(0) =y,

Q2 =4 E E’sin2(8/2) and T = Q2 /4m 2

Elastic cross sections at small angles and small Qs are dominated by G; ( Prad Hall B))

Elastic cross Sections at large angles and large Q%s are dominated by G,, ( GMP Hall A)

For moderate Q%s one can separate G; and G,, with Rosenbluth technique.
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Charge Radius of the Proton

e Proton Gg has no measured minima and it is too light for the Fourier
transformation to work in a model independent way.

e Thus for the proton we make use of the fact that as Q* goes to zero
the charge radius is proportional to the slope of G

GE(QZ) —1 Z (Q(n___):)' <7,,2n> Q2n

n>1

1/2

dGE(Q?)
A2 |y

We don’t measure to Q? of zero, so this is going to be an extrapolation problem.

ry, =4/ (r?) = 6

.}efferson Lab



1me

T

1US VS

Proton Rad

V. Punjabi et al., Eur. Phys. J. A51 (2015) 79.
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Proton Radius vs. Time

V. Punjabi et al., Eur. Phys. J. A51 (2015) 79.
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G. Lee, J. Arrington and R. Hill, Phys. Rev. D92 (2015) 013013.
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Warning: Danger of Confirmation Bias

In psychology and cognitive science, confirmation bias is a
tendency to search for or interpret information in a way that

confirms one's preconceptions, leading to statistical errors.

" '_
2

U.S. SENATE

SEN. JAMES INHOFE CSPAN2
R-Oklahoma c-span.org
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“Proton Radius Puzzle” in 1975 1?

F. Borkowski, G.G. Simon, V. H. Walther, and R. D. Wendling, Nucl. Phys. B93 (1975) 461.

Gem@®) =1 —§ri\lal? + gotripdlalt —+ .., (6)

For g% < 0.9 fm~2 the contributions of the higher terms in the expansion (6)
are negligable and the series can be truncated to give GE(qz) = § + fg2. From fitting
this expression to the form factors of fig. 5, the solid line of fig. 5 has been ob-
tained. The best fit parameters were § = 0.994 + 0.002 and § = —0.118 + 0.004 fm?.
The reduced x? was 0.5. The result of the fit did not depend significantly on the
fitted g2 range. This was checked by fitting additionally the Gy, values of table 2 up
to 1.2 fm~2. The addition of a g* term to the fit formula did not improve the fit,
moreoever the error of the additional parameter turned out to be larger than its
value. The best fit value of the parameter 6 is well within the normalization error of
the GE values. The best fit value of the parameter {3 gives a proton r.m.s. radius of
(rE)z = (.84 £ 0.02 fm. This value is higher than the dipole value of 0.81 fm, but
within the error limits it is compatible with the result (0.81 £ 0.04 fm) of a similar
experiment carried out at Saskatoon [7].

And then a model dependent correction is made. . ..
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Test of Additional Term

A textbook statistics problem is to quantify when to stop adding terms to a
nested statistical model (e.g. a Maclaurin series).

One way to do this is with an F-distribution test. Hadug?[:: l |

2/ - 2/ - - b

—1) — 4 1

p=XUZDoX0) vy o B
x2(4)

where j is the order of the fit and N the number points being fit.

(see James 2" edition page 282 or Bevington 3™ edition page 207)

Frederick James

Table 10.2. Maximum degree needed in polynomial approximation

Statistical Methods in

[7 N =3l 2 3 4 6 8 12 20 -_6_0_“_1_2_0- Experimental Physics
2nd Edition .
Reject 7' order to 95% if
confidence level if F'
is smaller than 185 | 101 | 7.7 | 6 | 53 | 47 | 43 | 4 | 39 -: 1 |

Quantifies the statement “doesn’t significantly improve the fit” from Borkoski et al.(1975).
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Saskatoon ‘74 and Mainz ‘80

G. G. Simon, C. Schmitt, F. Borkowski, and V. H. Walther, Nucl. Phys. A333 (1980) 381.
J. J. Murphy, Y. M. Shin, and D. M. Skopik, Phys. Rev. C9 (1974) 2125.

m _ fl (Qg) = N (]. + @1Q2) 9
20\ 2\ . )21
f(Q7) = noGEr(Q7) ~ no (1 + ;CL“Q ) fQ(QQ) = Ny (1 + alQQ + a2Q4) ;
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F-test rejects the f,(Q?) statistical model.

For f;(Q?), i.e. a linear extrapolation, we find a 0.84(1) fm radius.

Q? [fm™4]
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Mainz 2014 G Rosenbluth Data

J. Bernauer et al., Phys Rev. C90 (2014) 015206 supplemental material.

F(Q%) = noGi(Q?) ~ n(

1+ Z (L;,Q%
1=1

)

Using AIC, one rejects the 6™ order polynomial ( j=7 ). F-test gives the same result.

0.9

0.7

Ge
|

0.3
|

Q% [fm™

Residual

0.005

-0.005

-0.015

I [ I I I
6 8 10 12 14

Q? [fm™?]

BUT one should be very wary of using a high order polynomial to extrapolate beyond the data.
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Fixed Radius Fits

e Again using the Mainz 2014 Rosenbluth results.
 Fit the Maclaurin series with radius fixed to the two competing

hypotheses

— 0.84 fm from Muonic hydrogen
— 0.88 fm from Atomic hydrogen

Fixed Radius x> x> /v no as as 4 as
0.84 fm 56.34 0.783 0.994(1) 1.12(1) - 1072 —0.93(2) - 1073 5.0(1)-107° 1.20(5) - 10=°
0.88 fm 142.1 1.97 1.003(1) 1.62(1)-1072 —1.78(1) - 1073 1.14(1)-107* —2.90(7) - 107°
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Padé Approximant & Continued Fractions

Pade’ Approximant

When it exists, the Pade’ approximant (N,M) of a
Tayler series is unique.

ay+ a; xt+a,x? ... +aM*xM
f(x) =

1 +b;xt+b,x?...+bN*xN

In our case we want f(x) = ny G;(Q?), so

1 + a]_ QZ + a2 Q4 I aM*Z k QM*Z

f(x) =n
" +b, Q,+b, Q*... + bN™2 * xN*2

( Henri Padé ~ 1860 )

Continued Fraction

( Ancient Greeks )

Further reading: Extrapolation algorithms and Padé approximations: a historical survey
C. Brezinski, Applied Numerical Mathematics 20 (1996) 299.
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Maclaurin, Padé Approximant & Dipole Fits

Using the Mainz14 “Rosenluth” Results (where G; & G,, well constrained by the data).

m N'_I
£(Q%) = noCGr(Q%) = no (1 > @) S 1
i=1 Ll '
Q)
o
S 075
Used f test to rule out j=7 (i =6 + n, term ) Maclaurin Fit (j=5)
0.5
Dipole Fit (j=2)
WARNING: F test can reject functions, but 025 H|  Padé Approximant (N=M-1
It doesn’t tell you which of the remaining is
“best” or most appropriate. Maciaurin Fit (=6)
I | I I
(i.e. inspect the results ) 0 10 20

2 -2
These fits all give results that favor a proton radius of ~0.84 fm. Q" [fm~]
Note how Padé and dipole fits extrapolate nicely, while the Maclaurin quickly diverge.
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Fitting with Textbook Functions

Using the “old” Stanford, Jlab, Mainz, Saskatoon data along with the Mainz 2014 “Rosenbluth” G¢ Results
Functions straight out of Povh, Rith, Scholz, and Zetsche, Particles and Nuclei 2" Edition (1999) Springer.

— 1
Ng '0\_'(3 o |- Standard Dipole (0.81 fm)
] [ 1 GCM Fit '
G 08 =
S5 0
S 1
0.6 8 5
T |
0 1 2 3 1 5
0.4 o D
Monopole (r=0.84fm) ‘ Q [fm ]
0.2 | Dipole (r=0.84fm) Data shown with 1/sqrt(N) errors only.
Gaussian (r=0.84fm) Gray error is a 0.5% systematic error band.
-1 2
10 1 10 10

Q? [fm™]

“Every Model Is Wrong”, but the dipole function with the 0.84 fm radius is pretty amazing.
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Precise Fitting vs. Accurate Extrapolation

Warning!! The result below are shown with only standard errors estimates which are only valid over the range of the fit.

0
| " Hall AARC BdiData +
10" Order Polynominal, ny=-6027(162)
500000 Linear Extrapolation | < 150A, ng=-5573(119) ——
-1x108 - data used in linear fit 1
E
© -1.5x10° |- .
w
@
3
S -2x10% - .
ua}
-2.5x108 - 1
-3x10° - th 1
Hall A 9" Dipole Magnet Data
-3.5x10° ' ' ' ' '
0 100 200 300 400 500 600

Current [A]

The 10t Order Polynomial Fit Precisely Describes The Data But Doesn’t Accurately Extrapolate

Celina Pearson (Virginia Governor's School Senior going to VT) was given this data without the first point.
Including even Pade’ and C.F. fits, her n, was closest to truth with a linear extrapolation of last two points...
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Multivariate Errors

A

Parameter 2

Parameter 1

The Interpretation of Errors in Minuit (2004 by James)

seal.cern.ch/documents/minuit/mnerror.pdf

In ROOT: SetDefaultErrorDef(X.X)
Default is 1 and doesn’t change unless y

As per the particle data handbook, one should

be using a co-variance matrix and calculating the
probably content of the hyper-contour of the

fit. Default setting of Minuit of “up”(often call Ax?
is one.

Also note standard Errors often underestimate true
uncertainties. (manual of gnuplot fitting has an
explicate warning about this)

Confidence level (probability contents desired inside
Number of hypercontour of x? = x2,, + up)
Parameters 50% 70% 90% 95% 99%
1 0.46 1.07 2.70 3.84 6.63
2 1.39 2.41 4.61 5.99 9.21
3 2.37 3.67 6.25 7.82 11.36
4 3.36 4.88 7.78 9.49 13.28
5 4.35 6.06 9.24 11.07 15.09
6 5.35 7.23 10.65 12.59 16.81
7 6.35 8.38 12.02 14.07 18.49
8 7.34 9.52 13.36 15.51 20.09
9 8.34 10.66 14.68 16.92 21.67
10 9.34 11.78 15.99 18.31 23.21
11 10.34 12.88 17.29 19.68 24.71
If FCN is — log(likelihood) instead of y?, all values of up
should be divided by 2.
ou change it!
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Summary (part I)

o Occam’s Razor - Among competing hypotheses, the one with the fewest assumptions should be selected.
e  Confirmation Bias - Tendency to search for or interpret information in a way that confirms one's preconceptions.

» To avoid confirmation bias, one can apply statistical modeling techniques such as F-tests, AIC, Stepwise
Regression, etc. to determine the function to fit a given set of data.

* Rbased Stepwise Regression Code Posted Along With Example Data Sets
 http://jeffersonlab.github.io/model-selection/

*  With this technique, one finds radii consistent with the Muonic hydrogen data (0.84 fm)

* With the lowest Q? data (< 1fm?), statistical modeling of the data indicates one should use a linear
extrapolations as one would expect from the Maclaurin expansion of G;(Q?).

 If one wants to try to fit large Q2 ranges, functions such as the Pade’ approximant & C.E should likely
be used though even Maclaurin fits favor the Muonic results.

e Warning: One should keep in mind that a function that gives a precise fit may not be appropriate for
accurately extrapolating. ( a fundamental math problem )

e The Hand Paper Challenge ( Hand et al., Rev. of Modern Phys. 35 (1963) 342.)

e In the review article by Hand the author claims a consistent 0.805 fm radius.
* The paper has a single paragraph on the radius fit, yet this paper is the radius of standard dipole.

e What do you get!?

*  (useanything from a ruler to a Gaussian process regression)

e Try to follow what Hand et al. did OR use your own cut-offs
e We will discuss your results on Thursday!
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