Using Weak Interaction to Probe Neutrons in Nuclei the Why and How Experimentally

Office of Nuclear Physics

Thomas Jefferson National Accelerator Facility

Hall A at Jefferson Lab

http://hallaweb.jlab.org/parity/prex

Weak Interactions

The **Glashow-Weinberg-Salam Theory** unifies the electromagnetic and weak interactions.

Left -handed fermion fields (quarks & leptons) = doublets under SU(2)

Right-handed fields = singlets under SU(2)

Parity Violation

How to isolate the *weak interaction*

Do 2 experiments that are *mirror images* :

Weak interaction looks different.

EM interaction looks same.

Applications of A_{PV} at Jefferson Lab

Nucleon Structure

Strangeness $s \overline{s}$ in proton (HAPPEX, G0 expts)

• Test of Standard Model of Electroweak $\sin^2 \theta_W$

e-**e** (MOLLER) or **e**-**q** (PVDIS) **elastic e**-**p** at low Q^2 (QWEAK)

Nuclear Structure (neutron density) : PREX & CREX

How to explain the nuclear landscape from the bottom up? Theory roadmap

J. Phys. G 43, 044002 (2016)

http://iopscience.iop.org/article/10.1088/0954-3899/43/4/044002

PREX (²⁰⁸Pb) and CREX (⁴⁸Ca)

Measuring Neutron Skins $R_n - R_p$ provides new information and new constraints on nuclear structure theory

²⁰⁸Pb more closely approximates infinite nuclear matter (and neutron stars)

The structure of ⁴⁸Ca can, only recently, be addressed in detailed microscopic models.

Theory from P. Ring et al. Nucl. Phys. A 624 (1997) 349

Fundamental Nuclear Physics :

What is the size of a nucleus ?

Neutrons are thought to determine the size of heavy nuclei like ²⁰⁸Pb.

Can theory predict it ?

Scattering of High-Energy (here ~500 MeV) Electrons from Lead Nuclei.

The **nuclei** are the *"mysterious structures"* causing a pattern in the scattered electrons.

R. Michaels, Jlab HUGS Lecture

Scattering Rate vs Momentum Transfer

Reminder: Electromagnetic Scattering determines $\rho(r)$ (charge distribution) 208 Pb $d\sigma$ $d\Omega$ $\rho(r)$ 10 0.1 10-1 + SACLAY 76 STANFORD 69 10-2 08 10-3 10-4 .06 10-5 .04 10-6 E+M charge 10-7 Weak charge .02 Proton 10⁻⁸ Neutron 10⁹ 0 L 0 oⁱ⁰ 2 4 6 8 10 r (fm) юII 2 3 1 $q (fm)^{-1}$ R. Michaels, Jlab

HUGS Lecture

Z⁰ of weak interaction : sees the **neutrons**

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

T.W. Donnelly, J. Dubach, I. Sick Nucl. Phys. A 503, 589, 1989

C. J. Horowitz, S. J. Pollock, P.A. Souder, R. Michaels Phys. Rev. C 63, 025501, 2001

²⁰⁸Pb

http://hallaweb.jlab.org/parity/prex

How to Measure

Neutron Distributions, Symmetry Energy

- Proton-Nucleus Elastic
- Pion, alpha, d Scattering
- Pion Photoproduction
- Heavy ion collisions
- Rare Isotopes (dripline)

Involve strong probes, the interpretation is clouded by understanding of the reaction mechanism

• Magnetic scattering

• Most spins couple to zero.

- **PREX / C-REX** (weak interaction)
- Theory

→ MFT fit mostly by data *other than* neutron densities

Was expected since more neutrons (n) than protons (p)

Observed by PREX-I (95 % confidence)

Parity Violating electron scattering is "cleaner" than other probes (e.g. proton scattering)

Fundamental check of nuclear theory

http://hallaweb.jlab.org/parity/prex

Using Parity Violation

From low to medium to high density neutrons

Low density : nuclei

FIG. 2. The neutron EOS for 18 Skyrme parameter sets. The filled circles are the Friedman-Pandharipande (FP) variational calculations and the crosses are SkX. The neutron density is in units of neutron/ fm^3 .

Highest density : Neutron Stars

Medium density : Heavy Ion Collisions

"Ab Initio" (exact microscopic) calculations of R_{skin} for ⁴⁸Ca have recently been published. G. Hagen et al., Nature Physics 12, 186 (2016). Can be compared to Density Functional Theory (the red and blue points) and Dispersive Optical Model (DOM).

Application :

Neutron Stars

What is the nature of extremely dense matter?

Do collapsed stars form "exotic" phases of matter ? (strange stars, quark stars)

Crab Nebula (X-ray, visible, radio, infrared)

Pressure density

PREX helps here

Inputs:

- Eq. of state (EOS)

- Hydrostatics (Gen. Rel.)

Luminosity L

Temp. T

Astrophysics Observations

Mass M from pulsar timing

 $L = 4\pi\sigma_{R} R^{2} T^{4}$

(with corrections ...)

Mass - Radius relationship

Fig from: Dany Page.

J.M. Lattimer & M. Prakash, Science 304 (2004) 536.

Experiment Setup Parity: "The entire lab is the experiment"

Spectrometers at Jefferson Lab

These machines are "microscopes" for looking at quarks.

Spectrometers at Jefferson Lab

Spectrometers Measure :

How to do a Parity Experiment

(integrating method)

Experiment: Flip spin and count # scattered electrons in each spin state

High Resolution Spectrometers

Measure θ from Nuclear Recoil

Recoil is large for H, small for nuclei (3X better accuracy than survey)

Integrating Detection

- Integrate in 30 msec helicity period.
- Deadtime free.
- 18 bit ADC with $< 10^{-4}$ nonlinearity.
- But must separate backgrounds & inelastics (→HRS).

PREX-I Physics Result

at $Q^2 = 0.00906 \text{ GeV}^2$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} =$$

 $\begin{array}{rrr} 0.6571 \pm 0.0604(stat) \pm 0.0130(syst) \\ \text{ppm} & \begin{array}{r} 9.2\% & \begin{array}{r} 2.0\% \end{array} \end{array}$

- → Statistics limited (9%)
- \rightarrow Followup expt, PREX-II to get to 3%
- → Systematic error goal achieved ! (2%)

A list of the **Systematic Errors** for **PREX** with explanations to follow for the first two ...

Error Source	Absolute (ppm)	Relative (%)
Beam Asymmetries (1)	0.0072	1.1
Polarization (2)	0.0083	1.3
Detector Linearity	0.0076	1.2
BCM Linearity	0.0010	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ² (2)	0.0028	0.4
Target Thickness	0.0005	0.1
¹² C Asymmetry (1)	0.0025	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

(1) Nonzero correction (the rest assumed zero)

(2) Normalization Correction applied

Want to flip spin of electrons and do <u>not</u> flip E, θ or anything else !

Beam Asymmetries

- Want to flip the <u>helicity</u> of the beam and <u>nothing else</u>.
- EM cross section depends on E, θ
- Residual helicity correlations will exist at some level. Need to measure them and correct for them.
- Systematic error = error in the correction.

Polarized Electron Source

- Based on Photoemission from GaAs Crystal
- Polarized electrons from polarized laser
- Need :
 - Rapid, random helicity reversal
 - Electrical isolation from the rest of the lab
 - Feedback on Intensity Asymmetry

Parity Quality Beam : Unique Strength of JLab

Helicity – Correlated Position Differences $\langle X_R - X_L \rangle$ for helicity L, R $A_{raw} = A_{det} - A_Q + \alpha \Delta_E + \Sigma \beta_i \Delta x_i$ Measured separately

Points: Not sign-corrected. 20-50 nm diffs. with pol. source setup & feedback

Sign flips provide further suppression : Average with signs = what experiment feels

> achieved < 5 nm

Slug # (~1 day)

Important Systematic : PITA Effect

Polarization Induced Transport Asymmetry

Intensity Feedback

Methods to Reduce Systematics

Scanning the Pockels Cell voltage = scanning the residual linear polarization (DoLP)

A simplified picture: asymmetry=0 corresponds to minimized DoLP at analyzer

A rotatable $\lambda/2$ waveplate downstream of the P.C. allows arbitrary orientation of the ellipse from DoLP

Rotatable Half-Wave Plate

R. Michaels, Jlab HUGS Lecture

The Corrections Work !

Shown: period of data during HAPPEX (4He) when beam had a helicity-correlated position due to a mistake * in electronics.

* The mistake: Helicity signal deflecting the beam through electronics "pickup"

Final Beam Position Corrections (HAPPEX-H)

R. Michaels, Jlab HUGS Lecture **Beam Asymmetry Results**

- Energy: -0.25 ppb
- X Target: 1 nm
- X Angle: 2 nm
- Y Target : 1 nm
- Y Angle: <1 nm

Corrected and Raw, Left spectrometer arm alone, Superimposed!

Total correction for beam position asymmetry on Left, Right, or ALL detector: 10 ppb

Spectacular results from HAPPEX-H showed we could do PREX. Want multiple, redundant ways to flip the helicity. Here, we show the "Double Wien Filter"

Crossed E & B fields to rotate the spin

• Two Wien Spin Manipulators in series

• Solenoid rotates spin +/-90 degrees (spin rotation as B but focus as B²). Flips spin without moving the beam !

HAPPEX achieved 3 ppb Helicity Correlated Beam Systematics

- Corrections tiny (here, 3 ppb)
- Errors are statistical only

HUGS Lecture

Parity Violating Asymmetry

beam helicity, helps suppress some systematics)

There may be helicity-correlated transients in the beam.

- D & Q may have different time constants in response to transients.
- D may be non-linear in Q.

D = Detectorsignal Q = Charge in same time interval

Beam Polarization

 $A_{measured} = A_{physics} \times P_{e}$

Want to extract this Polarization of electrons, typically 0.9

Measure P_e through

- Compton Scattering $\vec{e} \vec{\gamma}$
- Moller Scattering
- $\vec{e} \vec{e}$
- Mott Scattering (not discussed)

- 1. Laser system: 1 W drive laser coupled to high gain Fabry-Perot cavity → several kW intracavity power
- 2. Photon detector: GSO crystal for low energies, or lead-tungstate for high energies.
- 3. Electron detector: silicon strip detector, 240 µm pitch, 192 strips/plane

Compton Polarimetry

1%-level Compton polarimetry has been achieved with Hall A Compton at ~ 1 GeV (PREX) and ~ 3 GeV (HAPPEX-II)

 $\frac{dP_e}{P_e} < 1\%$

Compton Laser System

Recent Compton Data with 11 GeV Beam

Figure courtesy Alexa Johnson

R. Michaels, Jlab **HUGS** Lecture

Compton Polarimeter in PREX-I

the grand average of laser cycle wise beam polarization V.S. slug number

HUGS Lecture

PREX

data

5 T MAGNET

Water chiller

Superconductive magnet: Maximal field $\pm 5T$

The iron foil targets sit in this field and become sping-polarized.

TEMPLE

Jefferson Lab

NEW POLARIZED ELECTRON TARGET

Designed and made by Temple University Rotation in horizontal plane ±10°

Vertical translation

Targets in holder: pure iron 1µm, 4µm, 12µm, 25µm

TEMPLE UNIVERSITY

R. Michaels, Jlab HUGS Lecture

Jefferson Lab

TEMPLE O. Glamazdin

Status of the Hall A Møller Polarimeter

Jefferson Lab

MØLLER SYSTEMATIC ERROR BUDGET

Variable	2010 (3.7T)	PREX (2017)
Target polarization	0.35%	0.25%
Analyzing power	0.3%	0.2%
Levchuk effect	0.3%	0.2%
Target temperature	0.02%	0.02%
Dead time	0.3%	0.05%
Background	0.3%	0.2%
High beam current*	0.2%*	0.2%
Others	0.5%	0.3%
Total	0.87%	0.53%

Thanks, Sasha Glamazdin

Returning to ... **PREX Asymmetry** ($P_e \times A$)

PREX/CREX : Summary

- Fundamental Nuclear Physics with many applications
- PREX-I achieved a 9% stat. error in Asymmetry (original goal : 3 %)
- Systematic error goals already achieved.
- PREX-II and C-REX to run back-to-back, possibly in 2018 (being decided now)

http://hallaweb.jlab.org/parity/prex

Extra Slides

Detector Package in HRS PREX Integrating Detectors UMass / Smith

• Liquid He cooling (30 Watts)

Performance of Lead / Diamond Targets

Targets with <u>thin</u> diamond backing (4.5 % background) degraded fastest.

Thick diamond (8%) ran well and did not melt at 70 uA.

Solution: Run with 10 targets.

PREX-I Result

Systematic Errors

Error Source	Absolute (ppm)	Relative (%)
Polarization (1)	0.0083	1.3
Beam Asymmetries (2)	0.0072	1.1
Detector Linearity	0.0076	1.2
BCM Linearity	0.0010	0.2
Rescattering	0.0001	0
Transverse Polarization	0.0012	0.2
Q ² (1)	0.0028	0.4
Target Thickness	0.0005	0.1
¹² C Asymmetry (2)	0.0025	0.4
Inelastic States	0	0
TOTAL	0.0140	2.1

- (1) Normalization Correction applied
- (2) Nonzero correction (the rest assumed zero)

Physics Asymmetry

- $A = 0.656 \ ppm$ $\pm 0.060(stat) \pm 0.014(syst)$
- \rightarrow Statistics limited (9%)
- → Systematic error goal achieved ! (2%)

Possible Future PREX Program ?

Each point 30 days stat. error only
Nucleus E (GeV) dR _N / R _N comment
²⁰⁸ Pb 1 1% PREX-II (approved by Jlab PAC, A rating)
⁴⁸ Ca 2.2 (1-pass) 0.4 % natural 12 GeV exp't will propose @ next PAC
⁴⁸ Ca 2.6 2% surface thickness
⁴⁰ Ca 2.2 (1-pass) 0.6 % basic check of theory
tin isotope 1.8 0.6 % apply to heavy ion
tin isotope 2.6 1.6 % surface thickness

R. Michaels, Jlab HUGS Lecture

Shufang Ban, C.J. Horowitz, R. Michaels J. Phys. G39 014104 2012

Corrections to the Asymmetry are Mostly Negligible

- Coulomb Distortions ~20% = the biggest correction.
- Transverse Asymmetry (to be measured)
- Strangeness
- Electric Form Factor of Neutron
- Parity Admixtures
- Dispersion Corrections
- Meson Exchange Currents
- Shape Dependence
- Isospin Corrections
- Radiative Corrections
- Excited States
- Target Impurities

R. Michaels, Jlab HUGS Lecture Horowitz, et.al. PRC 63 025501

