C200 Project: Thermal Curing scheme for Lead-glass Calorimeter

Tao Ye

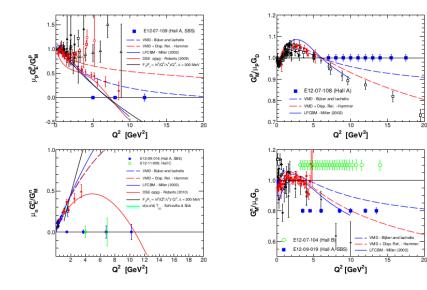
Stony Brook University

June, 2016, HUGS

Tao Ye (Stony Brook University) C200 Project: Thermal Curing scheme for Le

• a R&D project of Super Bigbite Program

- Electromagnetic calorimeter(ECal): TF1 lead-glass
- \sim 200 ECals: \sim 10 % of the full detector.

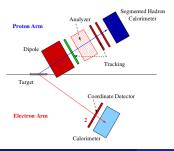

a R&D project of Super Bigbite Program

- Electromagnetic calorimeter(ECal): TF1 lead-glass
- \sim 200 ECals: \sim 10 % of the full detector.
- Super-Bigbite Program
 - Form factor measurements: G_E and G_M at high Q^2
 - Ready by the end of 2017

• a R&D project of Super Bigbite Program

- Electromagnetic calorimeter(ECal): TF1 lead-glass
- \sim 200 ECals: \sim 10 % of the full detector.
- Super-Bigbite Program
 - Form factor measurements: G_E and G_M at high Q^2
 - Ready by the end of 2017
- Featuring
 - High luminosity capability 10^{38} s/cm²
 - $\bullet\,$ Small scattering angle, down to 3.5 $^\circ\,$
 - Large solid angle, up to 70 msr
 - Gas Electron Multiplier(GEM) chamber

High Q^2 measurements for form factor

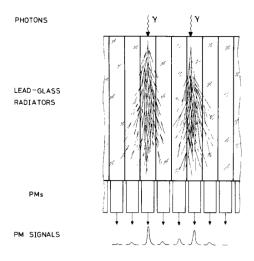


June, 2016, HUGS 3 / 14

(日) (同) (三) (三)

Super-Bigbite: Apparatus

- A Dipole magnet: from BNL
- Tracking detector: using GEM
- Coordinate Detector
- Hadron/electronmagnetic calorimeters



Tao Ye (Stony Brook University)

C200 Project: Thermal Curing scheme for Lea

June, 2016, HUGS 4 / 14

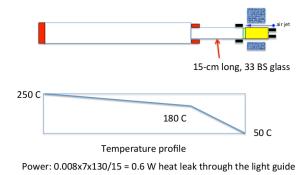
Electromagnetic Calorimeters for G_E^p

- TF1 Lead-glass : 4cm*4cm*40cm
- Cherenkov radiator from electron shower (γ)
- ECal: measures position/energy of incident particle

*NIM A 248 (1986) 86-102

Radiation damages

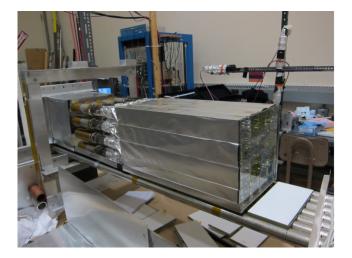
- Radiation damages: Darkening of lead-glass
 - decreases transparancy
 - degrades energy resolution
- ECal for G_E^p requires curving under high does radiation rate.
- UV curing is inefficient under high does rate

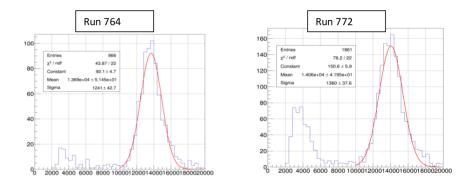


2015 DOE review

Implementation of an ECAL annealing scheme on the scale of the full detector assembly will take some further R&D which poses some risk. The C200 prototype test appears to be a reasonable next step...

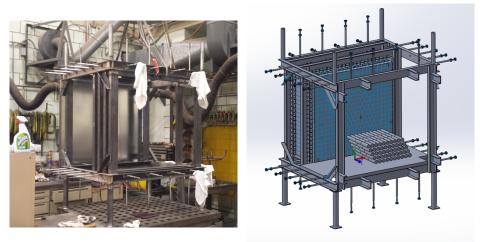
Goals


- searching for a damages curing method for running continuously
- ullet test it on a detector with \sim 200 ECal elements


A desired temperature distribution

- $\bullet~\sim$ 250 $^{\circ}\mathrm{C}$ on lead-glass
- \sim 50 $^{\circ}\mathrm{C}$ on PMTs

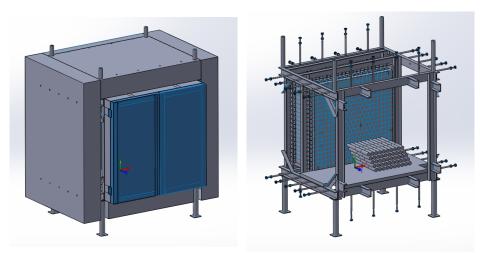
C16 prototype


• 4×4 blocks of ECals.

- Before: 9.1% , After(heating):9.7%
- C16: a proof-of-principle for heat annealing
- Next step C200: to understand what is required for full scale

A D > A A P >

C200 Design

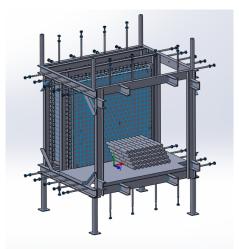


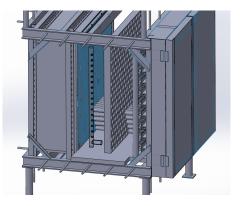
A (1) > 4

3

11 / 14

C200 Design

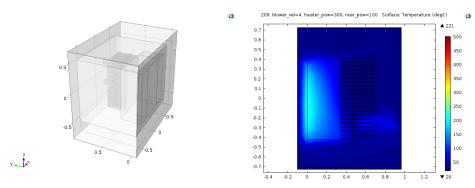



æ

э

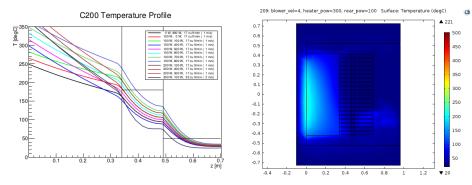
< 4 ₽ > <

C200 Design


э.

æ

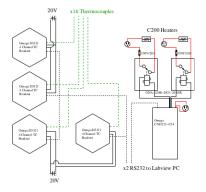
11 / 14


Tao Ye (Stony Brook University) C200 Project: Thermal Curing scheme for Le; June, 2016, HUGS

C200: COMSOL Simulation

- Desired temperature profile is achieved.
- C200 is being assembled
- Guided with simulation results, a test run will start at this summer.

C200: COMSOL Simulation



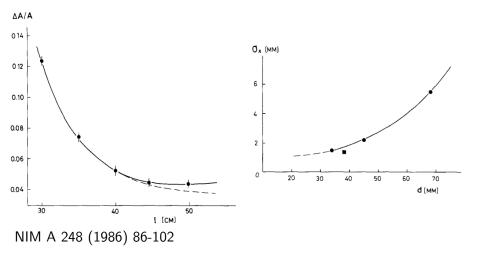
- Desired temperature profile is achieved.
- C200 is being assembled
- Guided with simulation results, a test run will start at this summer.

< 一型

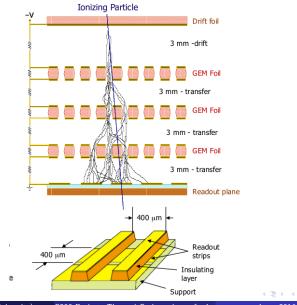
12 / 14

C200: Data Acquisition and Control modules

13 / 14


- 16 thermal couples + readout modules
- Control : temperature control + solidstate relay

- As a fraction of Super-Bigbite program, C200 offers a lot of interesting challenges to be solved.
- C16 provides a proof of thermal curing method
- C200 prototype will tests the operation at large scale


back up slides

∃ → (∃ →

Image: A matrix and a matrix

GEM chamber and electron avalanche

Tao Ye (Stony Brook University) C200 Project: Thermal Curing scheme for Lea June, 2016, HUGS

∃ →