Deeply Virtual Compton Scattering at Jefferson Lab

June 16-17, 2016

Frederic Georges (PhD student)

PhD Supervisor: Carlos Muñoz Camacho

Institut de Physique Nucléaire d'Orsay

CNRS-IN2P3 Université Paris-Sud, 91406 Orsay, France

Outline

- Introduction physics motivation
- Experimental setup
- High Resolution Spectrometer optics optimization
- Outlook

Physics motivation

- Form factors \rightarrow partons position
- Parton distribution functions \rightarrow partons momentum

But no correlations between the two!

- → Generalized Parton Distributions (GPDs) correlate longitudinal momentum and transverse position of partons.
- \rightarrow GPDs also give insights on nucleon spin structure.

GPDs accessible through Deeply Virtual Compton Scattering (DVCS) & interference with Bethe-Heitler.

My PhD subject: DVCS experiment at Jlab, Hall A!

 \rightarrow Extract DVCS cross-sections, as a function of Q², for fixed values of x_B

The DVCS + Bethe-Heitler interactions ep \rightarrow e'p' γ

 $Q^2 = - (e' - e)^2$: virtuality of γ^*

v = E - E', energies of the electron before and after scattering

$$x_{\rm B} = \frac{Q^2}{2M\nu} \qquad (\rm NB: x_{\rm B} \neq x)$$

 $\xi = \frac{x_B}{2 - xB}$

 -2ξ : longitudinal momentum transfer to the struck quark.

 $t = (p - p')^2$: squared momentum transfer to the proton

In the limit $Q^2 \rightarrow \infty$ and $\nu \rightarrow \infty$ but fixed x_B (Bjorken limit), the virtual photon γ^* interacts with a single quark in the proton.

The experimental setup

The LHRS detector package

- Vertical Drift Chambers : tracking
- Scintillators + Cherenkov : triggering
- Cherenkov + "Pion Rejector" (electromagnetic calorimeter) : particle identification (electrons VS pions)

The focal plan

- LHRS focal plan ~ camera focal plan
- Electron detected at focal plan:
 - Position x_{fp} , y_{fp}
 - Angles θ_{fp} , ϕ_{fp} (electron trajectory VS central ray axis)
- From x_{fp} , y_{fp} , θ_{fp} , and ϕ_{fp} : reconstruction at the target of :
 - Event vertex: y_{tg}
 - Angles θ_{tg} , ϕ_{tg} (electron trajectory VS central ray axis)
 - Momentum $\delta_{tg} (p_{electron} p_{LHRS})$

Reconstructing vertex, trajectory & momentum

• How ?

LHRS : made of 4 superconducting magnets + detector package Magnets : QQDQ configuration

The optics matrix

- Knowledge of how the electron trajectory is bent in the magnets allows the reconstruction.
- Electric currents/Magnetic fields of each magnet "tuned" for specific bending.
 → Optics Matrix

"On the paper" (1st order approximation):

The optics matrix coefficients

In real life:

$$y_{tg} = \sum_{j,k,l} Y_{jkl} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l},$$

$$y_{jkl} = \sum_{i=1}^{m} C_{i}^{Y_{jkl}} x_{fp}^{i}$$

$$\theta_{tg} = \sum_{j,k,l} T_{jkl} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l},$$

$$y_{tg} = \sum_{j,k,l} P_{jkl} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l},$$

$$\delta = \sum_{j,k,l} D_{jkl} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l},$$

$$C_{i}^{Y_{jkl}} \text{ "Optics matrix coefficients"}}$$

$$10$$

LHRS optics optimization

- What is the problem ?
- Superconducting magnet: maximum current threshold above which loss of superconductivity.

(you do not want that to happen)

But Q1 is old! \rightarrow threshold lower than in his youth!

- \rightarrow Threshold lower than experimental requirement
- \rightarrow Required current cannot be reached, magnetic field too low
- \rightarrow Different electron trajectory bending in magnet Q1
- \rightarrow Q1 is "detuned"

 \rightarrow Need to compute new optics matrix coefficients $C_i^{Y_{jkl}}$

Step 1 – optimization of the vertex reconstruction

- Data taken on a 5 thin carbon foils target (1mm thick)
- \rightarrow Expected vertex values y_{tg}^0

Step 1 – optimization of the vertex reconstruction

- Data taken on a 5 thin carbon foils target (1mm thick)
- \rightarrow Expected vertex values y_{tg}^0
- \rightarrow Computation of the new optics matrix coefficients $C_i^{Y_{jkl}}$ by minimizing:

$$\Delta(y) = \sum_{s} \left[\frac{\sum_{j,k,l} Y_{jkl} \theta_{fp}^{j} y_{fp}^{k} \phi_{fp}^{l} - y_{tg}^{0}}{\sigma_{y}^{s}}\right]^{2}$$

(aberration function)

Step 1 – optimization of the vertex reconstruction

Vertex reconstruction

After optimization

Before optimization

Step 2 – optimization of angles reconstruction

- Data taken on a 5 thin carbon foils target (1mm thick)
- Thick metal plate with holes inserted in front of the LHRS entrance (Sieve)

Step 2 – optimization of angles reconstruction

- Data taken on a 5 thin carbon foils target (1mm thick)
- Thick metal plate with holes inserted in front of the LHRS entrance (Sieve)
- \rightarrow Holes = expected values for angles θ_{tg} and ϕ_{tg}

→ Computation of new optics matrix coefficients by minimization of aberration function.

Step 3 – optimization of the momentum reconstruction

- Data taken on an LH₂ target, elastic scattering ep \rightarrow ep setting
 - Constrained system: known scattering angle = known scattering momentum
- Sieve out (not useful, would only decrease statistics)
- "Delta Scan"
 - LHRS angle fixed
 - 5 runs varying central momentum setting (central momentum, $\pm 2\%, \pm 4\%$)
 - Central momentum selection made by varying magnetic fields
 - Because of elastic momentum-scattering angle correlation, need to "move" central ray to illuminate whole focal plane
- \rightarrow Expected values for momentum δ_{tg}
- → Computation of new optics matrix coefficients by minimization of aberration function.

Step 3 – optimization of the momentum reconstruction

Relative momentum dp/p reconstruction

Before optimization

After optimization

Step 1, 2 and 3 – optimization of all 4 variables reconstruction

Elastic line: momentum – scattering angle

Conclusion and outlook

- DVCS experiment was running Winter/Spring 2016. Will come back Fall 2016.
- Spectrometer optics calibration almost complete (small corrections).
- However, still needs a thorough acceptance study.
- And a lot more, done by the DVCS collaboration...

• Long term: DVCS cross-sections extraction

Thank you for your attention! Questions ?

DVCS experiment (Q^2, x_B) phase space

 $W^2 = (p + q)^2$ invariant mass of the hadronic final state.

From DVCS cross-section to GPDs

DVCS cross-section is parametrized by GPDs, but integrated other x. We cannot directly extract GPDs from DVCS cross-section.

Extracted cross-section is proportional to $|BH|^2 + |DVCS|^2 + Interference$

- BH term: QED, well known and computed
- DVCS term: parametrized by bilinear combination of Compton Form Factors
 - Compton Form Factors are defined from GPDs combinations, integrated other x. Dependence on ξ and t.
 - Gives access to Compton Form Factors modulus
 - Needs several values of Q^2 and x_B to extract them
- Interference term: parametrized by real and imaginary parts of Compton Form Factors.
- DVCS + Interference terms allow to extract Compton Form Factors, from which GPDs are then extracted.

LHRS optics - acceptance study

Simulation shows that acceptance is affected. Will need further study to fully understand the new acceptance (correlations between parameters).