Møller Polarimetry and the Magneto-Optical Kerr Effect (MOKE)

Ryan Richards

Stony Brook University

June 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Outline

Møller Scattering

- Electron- electron scattering
- Occurs through the physical t and u channels respectively

• Cross section can be computed with high accuracy (QED process)

In the center of mass frame cross section can be written as

$$\frac{d\sigma}{d\Omega} = \frac{d\sigma^0}{d\Omega} (1 + P_t^{ll} P_b^{ll} A_{zz}(\theta))$$

Møller Scattering

• High energy limit yields

$$rac{d\sigma^0}{d\Omega} = (rac{(lpha(4-f))}{2m_e\gamma f})^2, A_{zz}(heta) = -frac{8-f}{(4-f)^2}, f \equiv \sin^2(heta)$$

 \bullet Can measure the beam polarization by comparing the cross section asymmetry $\epsilon,$

$$\epsilon = A_{zz}(\theta) P_b^{\prime\prime} P_t^{\prime\prime}$$

• At 90 degrees, analyzing power is $-\frac{7}{9}$

- Lab cross section is constant
- Lab scattering angle of the scattered and recoil electrons are identical and each carry half of the initial beam energy.

Møller Polarimetry

- Problem arises- Small lab scattering angle
- Let N be the count rates, with this one can define
- Quadrupole used(Hall C- late 90s) to resolve this issue- Double Møller Arm Polarimeter

$$N^{\pm} = L \cdot d\Omega \cdot \frac{d\sigma}{d\Omega} (1 \pm A_{zz} P_b^{\prime\prime} P_t^{\prime\prime})$$

Expression yields

$$P_b \sim rac{1}{A_{zz}P_t}$$

Experimental Concerns

- Ferromagnetic electron targets- only 2 out about 25 electrons polarized- small effective polarized $\sim 8\%$
- Need high statistics and tight systematic control
- Background dominated by Mott scattering for heavy nuclei $\sim Z^2$ vs $M\phi ller \sim Z$ Coincidence!
- Uncertainty in target polarization
- Levchuk effect due to the instrinsic momentum of the electrons

In Plane Polarization

- Want to determine the magnetization of ferromagnetic target (usually uses alloys)
- Polarization depends linearly on the magnetization and inversly proportional to K(g')
- Involves using pickup coils around the foils and determining the change in magnetic flux when reversing the field

- Difference in flux measured with and without the foil
- Need about measurement of the change in flux
- Flux depends of the homogeneity of the foil
- Value of g' not well known for alloys

Out of Plane Polarization

- Brute Force iron target perpendicular to magnetic field direction
- $\bullet\,\sim$ 3 T field used since iron saturates around 2 T
- Magnetic Domains = Bulk Properties
- g' factor and electron polarization known to high precision
- Absolute measurement no longer needed

What We Hope to See

- Curves yield full magnetic information
- Hysteresis curves for various angles i.e., various types of MOKE

Magneto-Optical Kerr Effect (MOKE)

MOKE- continued

- Polar MOKE \vec{M} perpendicular to reflection surface and parallel to plane of incidence (P.O.I)
- Longitudunal MOKE \vec{M} parallel to reflection surface and P.O.I
- Transverse MOKE \vec{M} parallel to reflection surface and perpendicular to P.O.I

MOKE Theory

- Monochormatic wave travelling through homogeneous medium -Helmholtz equations - dispersion relations
- Refractive index n = $\epsilon\mu$ optical frequencies μ = 1 related to long magnetic relaxation time
- Medium with damping complex wave vector complex n complex permittivity
- Circular coordinates yields diagonal permittivity tensor
- Index of refraction for LH/RH different i.e., $n_c = \sqrt{\epsilon_{xx} \pm i \epsilon_{yy}}$
- Reflected amplitude expressed as

$$\frac{E_r}{E_i} = \frac{1-n_c}{1+n_c}$$

- Kerr ellipticilty ϵ ratio of difference of reflected amplitudes of LH and RH for CP light
- Kerr rotation θ phase shift of LH/RH CP light

• Complex Kerr angle
$$\Theta = \theta$$
- i $\epsilon = \frac{ik}{\sqrt{\epsilon_{ii}}(\epsilon_{ii}-1)}$

Optics

Optics-Cont'd

• $E^r = A \cdot S \cdot C \cdot O \cdot P \cdot E^i$

Target Implementation

Figure: CAD, Courtesy of Fernando Araiza

Stony Brook Goals

- Mimic the Kerr effect using high μ material allow (e.g. Supermendur)
- Note this would simply be a proof of principle type of measurement
- Repeat brute force polarization measurement using iron
- Consequences for future use in future experiments e.g. PREX-II.

Systematic Errors

Iron Foil Polarization	0.25~%
Targets Discrepancy	0.5%
Target Saturation	0.3%
Analyzing Power	0.3%
Levchuk Effect	0.5%
Target Temperature	0.02%
Deadtime	0.3%
Background	0.3%
Other	0.5%
Total	1.1%

References

- Thesis Stephan Robinson Kerr measurements of e- polarization
- Thesis Mathia Loppacher Møller polarimeter for Hall C
- L.de Bever et al, NIM A400(1997) 379 A Target precise for Møller polarimetry
- WS Kim , M Aderholz and W Kleemann, MST Vol4 No. 11 16 Calibration of polar Kerr rotation and ellipticity