

Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes

Filippo Delcarro

What is the structure of the nucleons?

Is this structure explained by QCD?

Where does the spin of the nucleon come from?

Friday, June 17, 2016

We need to map the structure of nucleons

TMD distributions

"Amsterdam Notation"

TMD Parton Distribution FunctionsTMD Fragmentation Functions(TMD PDFs)(TMD FFs)

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

Mulders-Tangerman, NPB 461 (96) Boer-Mulders, PRD 57 (98) AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

TMD distributions

TMD distributions

TODAY: only "unpolarized"

TMD Parton Distribution FunctionsTMD Fragmentation Functions(TMD PDFs)(TMD FFs)

ni-inclusive DIS

Structure functions and JMDs

"Parton model" or "Phase 1"

e.g., Pavia 2014, Torino 2014

Structure functions and TMDs

With QCD corrections or "Phase 2"

e.g., DEMS 2014 for D-Y

TMEREPRESENTED FOR FRANSFORM

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_{\perp} e^{-ib_{\perp} \cdot k_{\perp}} \widetilde{f}_1^a(x,b_{\perp};\mu^2)$$

see, e.g., Rogers, Aybat, PRD 83 (11) Collins, "Foundations of Perturbative QCD" (11) Collins, Soper, Sterman, NPB250 (85)

$$f_1^a(x,k_{\perp};\mu^2) = \frac{1}{2\pi} \int d^2 b_{\perp} e^{-ib_{\perp} \cdot k_{\perp}} \widetilde{f}_1^a(x,b_{\perp};\mu^2)$$

see, e.g., Rogers, Aybat, PRD 83 (11) Collins, "Foundations of Perturbative QCD" (11) Collins, Soper, Sterman, NPB250 (85)

Drell-Yan processes

Drell-Yan processes

Friday, June 17, 2016

Available data

Presentishedrasdagagagatatilesfits

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 <u>hep-ph/0506225</u>	NLL	×	×			98
Pavia 2013 (+Amsterdam,Bilbao) <u>arXiv:1309.3507</u>	No evo		×	*	×	1538
Torino 2014 (+JLab) <u>arXiv:1312.6261</u>	No evo	(separately)	(separately)	*	*	576 (H) 6284 (C)
DEMS 2014 <u>arXiv:1407.3311</u>	NNLL	*	×			223
EIKV 2014 <u>arXiv:1401.5078</u>	NLL	1 (x,Q ²) bin	1 (x,Q ²) bin			500 (?)
Pavia 2016	NLL					8156

8000 data points Pavia 2016

TMD "Eight-thousander" fit

Nanga Parbat, Pakistan, 8126 m

Friday, June 17, 2016

HERMES (some selected bins)

However, normalizing the theory curves to the first bin, without changing the parameters of the fit, $\chi^2/dof = 1.94$

Compass (some selected bins)

Compass deuteron h⁺ $\chi^2/dof = 1.49$

First points are not fitted, but used as normalization to avoid problems related to data normalization

Drell-Yan data

 $\chi^2/dof = 1.57$ $\chi^2/dof = 0.48$ $\chi^2/dof = 0.42$ $\chi^2/dof = 0.97$

Z Boson production data

• We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data
- We extracted unpolarized TMDs using several thousand data points.

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data
- We extracted unpolarized TMDs using several thousand data points.
- We are working on uncertainty studies and Y terms still to be implemented.

$$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

µ and b_{*} prescriptions

$$\widetilde{f}_1^a(x,b_T;\mu^2) = \sum_i (\widetilde{C}_{a/i} \otimes f_1^i)(x,b_*;\mu_b) e^{\widetilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \widehat{f}_{\mathrm{NP}}^a(x,b_T)$$

µ and b_{*} prescriptions

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{NP}^{a}(x,b_{T})$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2}/b_{\max}^{2}}} \qquad \text{Collins, Soper, Sterman, NPB250 (85)}$$

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad b_{*} \equiv b_{\max} \left(1-e^{-\frac{b_{T}^{4}}{b_{\max}^{4}}}\right)^{1/4} \qquad \text{Bacchetta, Echevarria, Mulders, Radici, arXiv:1508.00402}$$

 $\mu_b = Q_0 + q_T \qquad b_* = b_T \qquad \text{DEMS}$

DEMS 2014

Signori

µ and b_{*} prescriptions

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,b_{*};\mu_{b}) e^{\widetilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T}) \ln \frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_*$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

$$\mu_b = 2e^{-\gamma_E}/b_*$$
 $b_* \equiv b_{\max} \left(1 - e^{-\frac{b_T^4}{b_{\max}^4}}\right)^{1/4}$

Bacchetta, Echevarria, Mulders, Radici, Signori <u>arXiv:1508.00402</u>

 $\mu_b = Q_0 + q_T \qquad b_* = b_T$

Complex-b prescription

DEMS 2014

Laenen, Sterman, Vogelsang, PRL 84 (00)

$$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\widetilde{f}_1^a(x,b_T;\mu^2) = \sum_i (\widetilde{C}_{a/i} \otimes f_1^i)(x,b_*;\mu_b) e^{\widetilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \widehat{f}_{\mathrm{NP}}^a(x,b_T)$$

$$\tilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\tilde{C}_{a/i} \otimes f_{1}^{i} \right)(x,b_{*};\mu_{b}) e^{\tilde{S}(b_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\widetilde{f}_1^a(x,b_T;\mu^2) = \sum_i (\widetilde{C}_{a/i} \otimes f_1^i)(x,b_*;\mu_b) e^{\widetilde{S}(b_*;\mu_b,\mu)} e^{g_K(b_T)\ln\frac{\mu}{\mu_0}} \widehat{f}_{\mathrm{NP}}^a(x,b_T)$$

Low-b_T modifications

 $\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

see talks by Collins, Boglione, (Rogers?)

$$\log\left(Q^2 b_T^2\right) \to \log\left(Q^2 b_T^2 + 1\right)$$

see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2 Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2 Q^2 b_{\rm max}^2)}}$$

$$b_{\min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5 Q} \sqrt{\frac{1}{1 + b_0^2 / (C_5^2 Q^2 b_{\max}^2)}}$$

Collins et al. arXiv:1605.00671

see talks by Collins, Boglione, (Rogers?)

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < 0.2 Q + 0.5 \text{ GeV}$

$P_{hT} < 0.8 \text{ GeV} (\text{if } z < 0.3)$

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < 0.2 Q + 0.5 \text{ GeV}$

 $P_{hT} < 0.8 \text{ GeV} (\text{if } z < 0.3)$

Total number of data points: 8156 Total $\chi^2/dof = 1.45$

Preliminary

Pavia 2016 perturbative ingredients

$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} \left(\widetilde{C}_{a/i} \otimes f_{1}^{i} \right) (x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

$$g_K = -g_2 \frac{b_T^2}{2} \qquad \qquad \mu_0 = 1 \,\text{GeV}$$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

 $\mu_0 = 1 \,\mathrm{GeV}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

 $g_2 = 0.14 \text{ GeV}^2$ from fit results

 $g_K = -g_2 \frac{b_T^2}{2}$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

 $\mu_0 = 1 \,\mathrm{GeV}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

$$g_2 = 0.14 \text{ GeV}^2$$
 from fit results

$$\hat{f}_{\rm NP}^a = e^{-\frac{b_T^2}{\left\langle b_T^2(x) \right\rangle_a}}$$

 $g_K = -g_2 \frac{b_T^2}{2}$

$$\widetilde{f}_{1}^{a}(x,b_{T};\mu^{2}) = \sum_{i} (\widetilde{C}_{a/i} \otimes f_{1}^{i})(x,\overline{b}_{*};\mu_{b}) e^{\widetilde{S}(\overline{b}_{*};\mu_{b},\mu)} e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}} \widehat{f}_{\mathrm{NP}}^{a}(x,b_{T})$$

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

 $\mu_0 = 1 \,\mathrm{GeV}$

$$b_{\min} = \frac{2e^{-\gamma_E}}{Q}$$

 $g_2 = 0.14 \text{ GeV}^2$ from fit results

For fragmentation functions

$$\hat{f}_{\rm NP}^a = e^{-\frac{b_T^2}{\left\langle b_T^2(x) \right\rangle_a}} \qquad \qquad \hat{f}_{\rm NP}^a = {\rm F.T. of} \left(e^{-\frac{P_\perp^2}{\left\langle P_\perp^2(z) \right\rangle_a}} + \lambda' P_\perp^2 e^{-\frac{P_\perp^2}{\left\langle P_\perp^2(z) \right\rangle_a'}} + \lambda'' P_\perp^4 e^{-\frac{P_\perp^2}{\left\langle P_\perp^2(z) \right\rangle_a'}} \right)$$

 $g_K = -g_2 \frac{b_T^2}{2}$

Effects of b_{*} prescription

30

Global $\chi^2/dof = 1.63\pm0.12$

Global $\chi^2 / dof = 1.63 \pm 0.12$

Without flavor dep.: global $\chi^2/dof = 1.72\pm0.11$

Global $\chi^2 / dof = 1.63 \pm 0.12$

Without flavor dep.: global $\chi^2/dof = 1.72\pm0.11$

Without flavor dep.: global $\chi^2/dof = 1.72\pm0.11$

KN 2006 perturbative ingredients

DEMS 2014 NNLL

