Extraction of unpolarized TMDs from SIDIS and Drell-Yan processes

Filippo Delcarro

MAPPING
THE PROTON IN 3D
 Established by the European Commission

What is the structure of the nucleons?

Is this structure explained by QCD?

Where does the spin of the nucleon come from?

We need to map the structure of nucleons

TMD distributions

	quark pol.			
		U	L	T
\%	U	f_{1}		h_{1}
$\overline{8}$	L		gil	$\mathrm{h}_{1 \mathrm{~L}}$
$\stackrel{\text { U }}{\text { ¢ }}$	T	$\mathrm{f}_{1 T}$	$g_{1 T}$	$\mathrm{h}_{1}, \mathrm{~h}_{1 \mathrm{~T}}$

quark pol.

U	L	T
D_{1}		H_{1}

"Amsterdam Notation"

TMD Fragmentation Functions [TMD FFs]

TMD Parton Distribution Functions [TMD PDFs]

TMDs in black survive transverse-momentum integration
TMDs in red are T-odd

TMD distributions

TMI worm-gear ribution Functions [TMD PDFs]

TMD Fragmentation Functions [TMD FFs]

TMD distributions

	U
U	f_{1}

U
D_{1}

TODAY: only "unpolarized"

TMD Parton Distribution Functions [TMD PDFs]

TMD Fragmentation Functions [TMD FFs]

Semi-inclusive DIS

Semi-inclusive DIS

Semi-inclusive DIS

TMD PDFs

Semi-inclusive DIS

Semi-inclusive DIS

Structure functions and TMDs

"Parton model" or "Phase 1"
e.g., Pavia 2014, Torino 2014

Structure functions and TMDs

TMD Parton
Distribution Functions
Fragmentation Functions
$F_{U U, T}\left(x, z, \boldsymbol{P}_{h T}^{2}, Q^{2}\right)=\sum_{a} \mathcal{H}_{U U, T}^{a}\left(Q^{2} ; \mu^{2}\right) \int d \boldsymbol{k}_{\perp} d \boldsymbol{P}_{\perp} f_{1}^{a}\left(x, \boldsymbol{k}_{\perp}^{2} ; \mu^{2}\right) D_{1}^{a \rightarrow h}\left(z, \boldsymbol{P}_{\perp}^{2} ; \mu^{2}\right) \delta\left(z \boldsymbol{k}_{\perp}-\boldsymbol{P}_{h T}+\boldsymbol{P}_{\perp}\right)$ $+Y_{U U, T}\left(Q^{2}, \boldsymbol{P}_{h T}^{2}\right)+\mathcal{O}\left(M^{2} / Q^{2}\right)$

With QCD corrections or "Phase 2"
e.g., DEMS 2014 for $D-Y$

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \tilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

see, e.g., Rogers, Aybat, PRD 83 (11)
Collins, "Foundations of Perturbative QCD" (11)
Collins, Soper, Sterman, NPB250 (85)

TMD evolution

$$
f_{1}^{a}\left(x, k_{\perp} ; \mu^{2}\right)=\frac{1}{2 \pi} \int d^{2} b_{\perp} e^{-i b_{\perp} \cdot k_{\perp}} \widetilde{f}_{1}^{a}\left(x, b_{\perp} ; \mu^{2}\right)
$$

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

see, e.g., Rogers, Aybat, PRD 83 (11)
Collins, "Foundations of Perturbative QCD" (11)
Collins, Soper, Sterman, NPB250 (85)

Drell-Yan processes

TMD PDF
$A+B \rightarrow \gamma^{*} \rightarrow l^{+} l^{-}$

Drell-Yan processes

TMD PDF

$A+B \rightarrow Z \rightarrow l^{+} l^{-}$

Analogous process for Z boson production

TMD PDF

Available data

Published and soon available fits

	Framework	HERMES	COMPASS	DY	Z production	N of points
KN 2006 hep-ph/0506225	NLL	X	x	\checkmark	\checkmark	98
Pavia 2013 (+Amsterdam,Bilbao) arXiv:1309.3507	No evo	\checkmark	x	x	x	1538
$\begin{gathered} \text { Torino } 2014 \\ \text { (+JLab) } \\ \text { arXiv: } 1312.6261 \end{gathered}$	No evo	(separately)	(separately)	x	x	$\begin{gathered} 576 \text { (H) } \\ 6284 \text { (C) } \end{gathered}$
DEMS 2014 arKiv:1407.3311	NNLL	x	x	\checkmark	\checkmark	223
EIKV 2014 arKiv:1401.5078	NLL	$1\left(x, Q^{2}\right)$ bin	$1\left(x, Q^{2}\right)$ bin	\checkmark	\checkmark	500 (?)
Pavia 2016	NLL	\checkmark	\checkmark	\checkmark	\checkmark	8156

8000 data points

Pavia 2016

TMD

"Eight-thousander"
fit

Nanga Parbat, Pakistan, 8126 m

HERMES (some selected bins)

$z=0.15$
$z=0.24$
$z=0.28$
$z=0.34$
$z=0.43$
$z=0.54$
$z=0.70$

HERMES mult, proton,

stronger cut on $P_{h t}$ at low z
cut on $P_{h T}<0.2 Q+0.5$
$X^{2} /$ dof $=4.20$ for proton π^{+} [other 7 channels are better] However, normalizing the theory curves to the first bin, without changing the parameters of the fit, $X^{2} /$ dof $=1.94$

Compass (some selected bins)

- $z=0.23$
- $z=0.28$
- $z=0.33$
- $z=0.38$
- $z=0.45$
- $z=0.55$
- $z=0.65$

$x=0.015, Q^{2}=2 . \mathrm{GeV}^{2}$

$\mathrm{x}=0.015, Q^{2}=3 . \mathrm{GeV}^{2}$

First points are not fitted, but used as normalization to avoid problems related to data normalization

Drell-Yan data

- $\mathrm{Q}=4.5 \mathrm{GeV}$
- $\mathrm{Q}=5.5 \mathrm{GeV}$
- $\mathrm{Q}=6.5 \mathrm{GeV}$
- $\mathrm{Q}=7.5 \mathrm{GeV}$
- $\mathrm{Q}=8.5 \mathrm{GeV}$
- $\mathrm{Q}=11.0 \mathrm{GeV}$
- $\mathrm{Q}=11.5 \mathrm{GeV}$
- $\mathrm{Q}=12.5 \mathrm{GeV}$
- $\mathrm{Q}=13.5 \mathrm{GeV}$

$X^{2} / \operatorname{dof}=1.57$
$X^{2} /$ dof $=0.48$
$x^{2} / d o f=0.42$
$\mathrm{X}^{2} / \mathrm{dof}=0.97$

Z Boson production data

Conclusions

Conclusions

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.

Conclusions

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data

Conclusions

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data
- We extracted unpolarized TMDs using several thousand data points.

Conclusions

- We showed how useful is to fit the TMD FFs and PDFs to different different processes to test their universality.
- We demonstrated for the first time that it is possible to fit simultaneously SIDIS, DY, and Z boson data
- We extracted unpolarized TMDs using several thousand data points.
- We are working on uncertainty studies and Y terms still to be implemented.

BACKUP

μ and b_{*} prescriptions

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

μ and b_{*} prescriptions

Choice Choice

$\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)}$

μ and b_{*} prescriptions

$$
\begin{aligned}
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \\
& b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \\
& \begin{array}{ll}
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} & b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{4}^{4}}{b_{\max }}}\right)^{1 / 4} \\
\begin{array}{l}
\text { Collins, Soper, Sterman, NPB250 [85] } \\
\mu_{b}=Q_{0}+q_{T}
\end{array} \quad b_{*}=b_{T} & \text { Bacchetta, Echevarria, Mulders, Radici, Signori } \\
\text { arXiver.00402 }
\end{array} \\
& \text { DEMS 2014 }
\end{aligned}
$$

μ and b_{*} prescriptions

Choice Choice

$\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv \frac{b_{T}}{\sqrt{1+b_{T}^{2} / b_{\max }^{2}}} \quad$ Collins, Soper, Sterman, NPB250 (85)
$\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad b_{*} \equiv b_{\max }\left(1-e^{-\frac{b_{5}^{4}}{b_{\text {max }}}}\right)^{1 / 4} \quad \begin{aligned} & \text { Bacchetta, Echevarria, Mulders, Radici, Signori } \\ & \text { arXXivi1508.00402 }\end{aligned}$
$\mu_{b}=Q_{0}+q_{T} \quad b_{*}=b_{T}$
DEMS 2014

Complex-b prescription

Nonperturbative ingredients 1

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Nonperturbative ingredients 1

Nonperturbative ingredients 1

Nonperturbative ingredients 2

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Nonperturbative ingredients 2

Nonperturbative ingredients 2

$$
\begin{gathered}
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
-g_{2} \frac{b_{T}^{2}}{2} \\
-2 g_{2} \ln \left(1+\frac{b_{T}^{2}}{4}\right) \\
\begin{array}{l}
\text { Collins, Soper, Sterman, NPB250 [85) } \\
\begin{array}{l}
\text { Aidala, Field, Gamberg, Rogers } \\
\text { arXiv:1401.2654 }
\end{array} \\
-g_{0}\left(b_{\max }\right)\left(1-\exp \left[-\frac{C_{F} \alpha_{s}\left(\mu_{b_{*}}\right) b_{T}^{2}}{\pi g_{0}\left(b_{\max }\right) b_{\max }^{2}}\right]\right) \begin{array}{l}
\text { Collins, Rogers } \\
\text { arXiv:1412.3820 }
\end{array}
\end{array}
\end{gathered}
$$

Low-bт modifications

$\log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right)$
see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104
see talks by Collins, Boglione, [Rogers?]

Low-bт modifications

$$
\begin{aligned}
& \log \left(Q^{2} b_{T}^{2}\right) \rightarrow \log \left(Q^{2} b_{T}^{2}+1\right) \quad \begin{array}{l}
\text { see, e.g., Bozzi, Catani, De Florian, Grazzini } \\
\text { hep-ph,0302104 }
\end{array} \\
& b_{*}\left(b_{c}\left(b_{\mathrm{T}}\right)\right)=\sqrt{\frac{b_{\mathrm{T}}^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2}\right)}{1+b_{\mathrm{T}}^{2} / b_{\max }^{2}+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}} \quad b_{\min } \equiv b_{*}\left(b_{c}(0)\right)=\frac{b_{0}}{C_{5} Q} \sqrt{\frac{1}{1+b_{0}^{2} /\left(C_{5}^{2} Q^{2} b_{\max }^{2}\right)}}
\end{aligned}
$$

Collins et al.
arXiv:1605.00671
see talks by Collins, Boglione, [Rogers?]

Data selection

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<0.2 Q+0.5 \mathrm{GeV}$
$P_{h T}<0.8 \mathrm{GeV}($ if $z<0.3)$

Data selection

$Q^{2}>1.4 \mathrm{GeV}^{2}$
$0.2<z<0.7$
$P_{h T}, q_{T}<0.2 Q+0.5 \mathrm{GeV} \quad P_{h T}<0.8 \mathrm{GeV}($ if $z<0.3)$

Total number of data points: 8156
Total $X^{2} /$ dof $=1.45$

Pavia 2016 perturbative ingredients

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Pavia 2016 other ingredients

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)
$$

Pavia 2016 other ingredients

$$
\begin{gathered}
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \\
b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

Pavia 2016 other ingredients

$$
\begin{aligned}
& \widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& \mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
& b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q} \\
& g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV}
\end{aligned}
$$

Pavia 2016 other ingredients

$$
\begin{gathered}
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV}
$$

Pavia 2016 other ingredients

$$
\begin{gathered}
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV}
$$

$$
\hat{f}_{\mathrm{NP}}^{a}=e^{-\frac{b_{T}^{2}}{\left\langle b_{T}^{2}(x)\right\rangle_{a}}}
$$

Pavia 2016 other ingredients

$$
\begin{gathered}
\widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, \bar{b}_{*} ; \mu_{b}\right) e^{\tilde{S}\left(\bar{b}_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
\mu_{b}=2 e^{-\gamma_{E}} / b_{*} \quad \bar{b}_{*} \equiv b_{\max }\left(\frac{1-e^{-b_{T}^{4} / b_{\max }^{4}}}{1-e^{-b_{T}^{4} / b_{\min }^{4}}}\right)^{1 / 4} \quad b_{\max }=2 e^{-\gamma_{E}} \\
b_{\min }=\frac{2 e^{-\gamma_{E}}}{Q}
\end{gathered}
$$

$$
g_{K}=-g_{2} \frac{b_{T}^{2}}{2} \quad \mu_{0}=1 \mathrm{GeV}
$$

$$
g_{2}=0.14 \mathrm{GeV}^{2} \quad \text { from fit results }
$$

For fragmentation functions

$$
\hat{f}_{\mathrm{NP}}^{a}=e^{-\frac{b_{T}^{2}}{\left\langle b_{T}^{b}(x)\right\rangle_{a}}} \quad \hat{f}_{\mathrm{NP}}^{a}=\text { F.T. of }\left(e^{-\frac{P_{\perp}^{2}}{\left\langle P_{\perp}^{2}(z)\right\rangle_{a}}}+\lambda^{\prime} P_{\perp}^{2} e^{-\frac{P_{\perp}^{2}}{\left\langle P_{\perp}^{2}(z)\right\rangle_{a}^{\prime}}}+\lambda^{\prime \prime} P_{\perp}^{4} e^{-\frac{P_{\perp}^{2}}{\left\langle P_{\perp}^{2}(z)\right\rangle_{a}^{\prime \prime}}}\right)
$$

Effects of b_{*} prescription

Pavia 2013 [no TMD evo)

Global $\chi^{2} /$ dof $=1.63 \pm 0.12$

Pavia 2013 [no TMD evo)

Global $\chi^{2} /$ dof $=1.63 \pm 0.12$
Without flavor dep.: global $\chi^{2} /$ dof $=1.72 \pm 0.11$

Pavia 2013 [no TMD evo)

Global $\chi^{2} /$ dof $=1.63 \pm 0.12$
Without flavor dep.: global $\chi^{2} /$ dof $=1.72 \pm 0.11$

first $P_{h T}$ excluded from fit

Pavia 2013 [no TMD evo)

Global $\chi^{2} /$ dof $=1.63 \pm 0.12$
Without flavor dep.: global $\chi^{2} /$ dof $=1.72 \pm 0.11$
not so low χ^{2}

first $P_{h T}$ excluded from fit

KN 2006 perturbative ingredients

$$
\begin{aligned}
& \tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& C_{0}\left(\mathcal{O}\left(\alpha_{S}^{0}\right)\right) \\
& C_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) \\
& C_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{aligned}
$$

DEMS 2014 NLL

$$
\begin{aligned}
& \widetilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{\tilde{S}}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right) \\
& \begin{array}{lll}
\longrightarrow & A_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & \begin{array}{c}
A_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right) \\
\checkmark
\end{array} \\
& B_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) & A_{3}\left(\mathcal{O}\left(\alpha_{S}^{3}\right)\right) \\
& B_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{array} \\
& C_{0}\left(\mathcal{O}\left(\alpha_{S}^{0}\right)\right) \\
& C_{1}\left(\mathcal{O}\left(\alpha_{S}^{1}\right)\right) \\
& C_{2}\left(\mathcal{O}\left(\alpha_{S}^{2}\right)\right)
\end{aligned}
$$

DEMS 2014 NNLL

$$
\tilde{f}_{1}^{a}\left(x, b_{T} ; \mu^{2}\right)=\sum_{i}\left(\tilde{C}_{a / i} \otimes f_{1}^{i}\right)\left(x, b_{*} ; \mu_{b}\right) e^{\tilde{S}\left(b_{*} ; \mu_{b}, \mu\right)} e^{g_{K}\left(b_{T}\right) \ln \frac{\mu}{\mu_{0}} \hat{f}_{\mathrm{NP}}^{a}\left(x, b_{T}\right)}
$$

