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Friday, June 17, 2016



!
!"#$%&' () *+,-. /0

Is this structure explained by QCD?
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Where does the spin of the nucleon come from?
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the structure of nucleons
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     Semi-inclusive DISSemi-inclusive DIS
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�(l) + N(P )→ �(l�) + h(Ph) + X,

y

z

x

hadron plane

lepton plane

l′
l ST

Ph

Ph⊥

h

S

T

mh
N (x, z,P 2

hT , Q2) =
dσh

N/(dxdzdP 2
hT dQ2)

dσDIS/(dxdQ2)
≈ π FUU,T (x, z,P 2

hT , Q2)
FT (x,Q2)
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Structure functions and TMDs
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dk⊥ dP⊥ fa

1

�
x, k2

⊥
�
Da→h

1

�
z,P 2

⊥
�
δ
�
zk⊥ − P hT + P⊥

�
+O

�
M2/Q2

�

“Parton model” or “Phase 1”

TMD Parton 
Fragmentation Functions

TMD Parton 
Distribution Functions

e.g., Pavia 2014, Torino 2014
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     TMD evolutionTMD evolution: Fourier transform
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see, e.g., Rogers, Aybat, PRD 83 (11)
Collins, “Foundations of Perturbative QCD” (11)
Collins, Soper, Sterman, NPB250 (85)
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nonperturbative part
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Fig. 2: Event distribution in the inclusive variables Q2
and xB j and the 23 bins of the hadron cross section

analysis. Within each bin, the fraction of events contained is indicated in %.
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Fig. 3: Hadron acceptances Ah− and Ah+ determined with the Monte Carlo simulation for Q2 > 1

(GeV/c)2
as a function of

lab pT and
labη for negative hadrons h− (left) and positive hadrons h+ (right).

The acceptances have been smoothed in order to reduce the granularity from the binning.

teristics, making the use of variables defined in the laboratory frame preferable; therefore, the transverse

momentum
lab pT , the polar angle

labθ , and the pseudorapidity
labη = − ln(tan

labθ
2
) of the hadron are

defined with respect to the direction of the incoming muon. The choice of
labθ is particularly convenient

to exhibit the acceptance cut due to the aperture limit of the polarised target magnet at
labθ = 70 mrad

for the upstream edge of the target. The factorization of hadron and muon acceptances implies that the

differential multiplicities only depend on Ah(+,−) since Aincl cancels, see Eq. 2. Figure 3 shows the hadron

acceptances Ah− and Ah+ used in the analysis.

The four-dimensional acceptance used in the present analysis is integrated over the azimuthal angle of

the hadrons, i.e. does not take into account the azimuthal modulations in the cross section [2]. The

systematic effect on the extracted �p2

T � have been investigated and found to be negligible.

3 Results

The differential multiplicities d2nh±/dzd p2

T in bins of (Q2, xB j) are defined in the introduction in terms of

the semi-inclusive and inclusive differential cross sections. They are obtained as the acceptance corrected

number of hadrons ∆4Nh±
in 8×40 (z, p2

T ) bins and 23 (∆xB j,∆Q2
) bins, divided by the number ∆2Nµ
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     Published and soon available fitsPresently or soon available fits

6

Framework HERMES COMPASS DY Z 
production N of points

KN 2006
 hep-ph/0506225

NLL ! ! " " 98

Pavia 2013
(+Amsterdam,Bilbao)
 arXiv:1309.3507

No evo " ! ! ! 1538

Torino 2014
(+JLab)

 arXiv:1312.6261
No evo "

(separately)
"

(separately) ! !
576 (H)

6284 (C)

DEMS 2014
arXiv:1407.3311

NNLL ! ! " " 223

EIKV 2014
 arXiv:1401.5078

NLL 1 (x,Q2) bin 1 (x,Q2) bin " " 500 (?)

Pavia 2016 NLL " " " " 8156
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Nanga Parbat, Pakistan, 8126 m

8000 data points

TMD
“Eight-thousander”

fit

Pavia 2016
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Conclusions

29

• We showed how useful is to fit the TMD FFs and PDFs to different different 
processes to test their universality.

• We demonstrated for the first time that it is possible to fit simultaneously 
SIDIS, DY, and Z boson data

• We extracted unpolarized TMDs using several thousand data points.

• We are working on uncertainty studies and Y terms still to be implemented.

Friday, June 17, 2016



Friday, June 17, 2016



BACKUP

Friday, June 17, 2016



μ and b∗ prescriptions

32

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Friday, June 17, 2016



μ and b∗ prescriptions

32

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Choice Choice

Friday, June 17, 2016



μ and b∗ prescriptions

32

�fa
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C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Choice Choice

b∗ ≡
bT�

1 + b2
T /b2

max

b∗ ≡ bmax

�
1− e

− b4T
b4max

�1/4

µb = 2e−γE /b∗

µb = Q0 + qT b∗ = bT

µb = 2e−γE /b∗

Collins, Soper, Sterman, NPB250 (85)

DEMS 2014

Bacchetta, Echevarria, Mulders, Radici, Signori
arXiv:1508.00402
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µb = Q0 + qT b∗ = bT

µb = 2e−γE /b∗

Collins, Soper, Sterman, NPB250 (85)

DEMS 2014

Bacchetta, Echevarria, Mulders, Radici, Signori
arXiv:1508.00402

Laenen, Sterman, Vogelsang, PRL 84 (00)Complex-b prescription

Friday, June 17, 2016

http://arxiv.org/abs/arXiv:1508.00402
http://arxiv.org/abs/arXiv:1508.00402


Nonperturbative ingredients 1

33

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Friday, June 17, 2016



Nonperturbative ingredients 1

33

�fa
1 (x, bT ;µ2) =

�

i

�
C̃a/i ⊗ f i

1

�
(x, b∗;µb)eS̃(b∗;µb,µ)egK(bT ) ln µ

µ0 f̂a
NP(x, bT )

Choice

Friday, June 17, 2016



Nonperturbative ingredients 1

33

�fa
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�
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almost everybody

Pavia 2013, KN 2006

DEMS 2014

e
− b2T

�b2
T
�

J
H
E
P
1
1
(
2
0
1
4
)
0
9
8

• It has to be such that

lim
bT→0

F̃NP
q/N = 1 , (2.33)

in order to guarantee that the perturbative series is not altered where its convergence

properties are sound.

We have not included a dependence on x, as data eventually do not need such correction

and to keep the model simple enough. In eq. (2.33) we are assuming that the values of x

are not extremely small (say x > 10−3), in which case the whole TMD formalism should

be re-considered.

We have studied several parametrizations of the non-perturbative part (Gaussian, poly-

nomial, etc.) and the final one which better provides a good fit of the data, with the

minimum set of parameters and DNP = 0, is

F̃NP
q/N (x, bT ;Q) = e−λ1bT

(
1 + λ2b

2
T

)
. (2.34)

As discussed below in the text the data for Z-boson production are basically sensitive just

to the parameter λ1, that is to the exponential factor and not to the second power-like term

that, controlling the large-bT region, is more sensitive to small-qT data. The global fit so

performed allows to fix, to a certain precision, the value of this non-perturbative constant.

In other words, this fit can be used to fix the amount of non-perturbative QCD corrections

in the transverse momentum spectra. As commented above, the parameter λ2 corrects the

behavior of the TMDPDF at high values of bT and results necessary to describe the data

at low dilepton invariant mass and low qT .

Considering now a nonzero DNP, this results in a Q-dependent factor in the non-

perturbative model (see the studies of refs. [23, 24] and more recently refs. [5, 8]). Thus,

from eqs. (2.31) and (2.34), by setting DNP = λ3b2T /2, we have

F̃NP
q/N (x, bT ;Q) = e−λ1bT

(
1 + λ2b

2
T

)(Q2

Q2
0

)−λ3
2 b2T

. (2.35)

We anticipate here that the sensitivity of the data to this extra factor with λ3 is not

very strong, although we observe an improvement in the χ2. This is a consequence of the

fact that the fully resummed D function is actually valid on a region of impact parameter

space which is broad enough for the analysis of the sets of available data (notice that we

have in all cases a dilepton invariant mass Q > 4GeV). It might be that at lower values

of Q such corrections could be more significant. On the other hand one expects that also

the factorization theorem should be revised when the values of Q become of the order

of the hadronization scale. It is then possible that the non-perturbative corrections to

the evolution kernel happen there where the basic hypothesis of the factorization theorem

(Q ! qT ∼ ΛQCD ∼ O(1 GeV)) become weaker and so are more difficult to extract. A

more detailed study in this direction is beyond the scope of this paper.

Finally in figure 2 we show the effect of the model of eq. (2.34) on the TMDPDF at
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lidity of the W -term approximation does not end at a
sharp point in qT, and thus a smooth function character-
izes general physical expectations. A reasonable choice
is

Ξ

(

qT
Q

, η

)

= exp

[

−

(

qT
ηQ

)aΞ
]

, (39)

with aΞ > 2.
The only differences between the old and new W -term

are: i) the use of bc(bT) rather than bT in W̃ , and ii) the
multiplication by Ξ(qT/Q, η). (The second modification
was proposed by Collins in Ref. [4, Eq. (13.75)]. There Ξ
is called F (qT/Q).) Equation (38) matches the standard
definition in the limit that C5 and η approach infinity.
Finally, we will present a fully optimized formula for

WNew(qT, Q; η, C5) corresponding to the one for the orig-
inal W (qT, Q) in Eq. (35).
But first it will be convenient to construct some auxil-

iary results.
Naturally, b∗ is to be replaced by

b∗(bc(bT)) =

√

b2T + b20/(C
2
5Q

2)

1 + b2T/b
2
max + b20/(C

2
5Q

2b2max)
. (40)

Also we define

bmin ≡ b∗(bc(0)) =
b0

C5Q

√

1

1 + b20/(C
2
5Q

2b2max)
. (41)

Then, for large enough Q and bmax

bmin ≈
b0

C5Q
. (42)

Thus, bmin decreases like 1/Q, in contrast to bmax which
remains fixed. Note also that

b∗(bc(bT)) −→











bmin bT % bmin

bT bmin % bT % bmax

bmax bT & bmax .

(43)

For bT % 1/Q, b∗(bc(bT)) ≈ b∗(bT). Instead of µb∗ , we
will ultimately use the scale

µ̄ ≡
C1

b∗(bc(bT))
(44)

to implement renormalization group improvement in
TMD correlation functions. There is a maximum cut-
off on the renormalization scale equal to

µc ≡ lim
bT→0

µ̄ =
C1C5Q

b0

√

1 +
b20

C2
5 b

2
maxQ

2
≈

C1C5Q

b0
.

(45)
The approximation sign corresponds to the limit of large
Qbmax. Note that,

bminµc = C1 . (46)

The steps for finding a useful formula for the evolved WNew(qT, Q; η, C5) are as follows. Equation (32) becomes

WNew(qT, Q; η, C5) = Ξ

(

qT
Q

, η

)
∫

d2bT
(2π)2

eiqT·bTW̃NP(bc(bT), Q)W̃ (b∗(bc(bT)), Q) . (47)

Now the definition of W̃ (bT, Q) is unchanged, and only the bT → bc(bT) replacement is new. Therefore instead of
Eq. (35) we simply need

W̃ (bc(bT), Q) = H(µQ, Q)
∑

j′i′

∫ 1

xA

dx̂

x̂
C̃pdf

j/j′ (xA/x̂, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))fj′/A(x̂; µ̄)×

×

∫ 1

zB

dẑ

ẑ3
C̃ff

i′/j(zB/ẑ, b∗(bc(bT)); µ̄
2, µ̄,αs(µ̄))dB/i′ (ẑ; µ̄)×

× exp

{

ln
Q2

µ̄2
K̃(b∗(bc(bT)); µ̄) +

∫ µQ
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dµ′
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[

2γ(αs(µ
′); 1)− ln

Q2

µ′2
γK(αs(µ

′))

]}

× exp

{

−gA(xA, bc(bT); bmax)− gB(zB, bc(bT); bmax)− 2gK(bc(bT); bmax) ln

(

Q

Q0

)}

. (48)

This is the same as Eq. (35) except that b∗(bc(bT)) and µ̄ = C1/b∗(bc(bT)) are used instead of b∗(bT) and
µb∗ = C1/b∗(bT). Note that gK(bc(bT); bmax) depends on Q through bc, albeit only for bT ! 1/Q. For bT & 1/Q,
gK(bc(bT); bmax) → gK(bT; bmax). Also, gK(bc(bT); bmax) does not vanish exactly as bT → 0 but instead approaches a
power of 1/Q.
Up to this point, we have introduced two new parameters, η and C5, in the treatment of the W -term.
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FIG. 3. Data points: Hermes multiplicities mh
p(x, z, P 2

hT ; Q2) for pions and kaons off a proton target as functions of P 2
hT for

one selected x and Q2 bin and few selected z bins. Shaded bands: 68% confidence intervals obtained from fitting 200 replicas of
the original data points in the scenario of the default fit. The bands include also the uncertainty on the collinear fragmentation
functions. The lowest P 2

hT bin has not been included in the fit.
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FIG. 4. Same content and notation as in the previous figure, but for a deuteron target.
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