Motivator: Measurement of G_E^n / G_M^n by the Double Polarised ²H(\overrightarrow{e} , e' \overrightarrow{n}) Reaction

Kieran Hamilton

June 17, 2016

Table of contents

Neutron EMFF Motivations

- EMFF at Jefferson Lab Hall A
- EMFF and Diquark Correlations in Nucleons
- The Need for Better G_E^n / G_M^n Data

2 Experimental Method

- Summary of Experimental Technique
- G_E^n Apparatus $e + d \longrightarrow e' + n + p$
- G_F^n / G_M^n Using Recoil Polarimetery
- Elastic N N Scattering
- G_E^n / G_M^n Methods ... Pros and Cons

3 Simulations on the Polarimeter

- Polarimeter Figure of Merit
- Geant4 Model

EMFF at Jefferson Lab - Hall A

Main points (as far as I'm considered):

- DSE explicitly describe the dynamical generation of the mass of constituent quarks
- Zero crossing point (if any) of the G_E/G_M ratios affects the location and width of the transition region between constituent- and parton-like behavior of the dressed guarks.
- A more rapid transition from non-perturbative to perturbative behavior pushes the proton zero point to higher Q²
- Conversely the neutron zero point is pushed to lower Q²
- Neutron data completely lacking at high Q²

Kieran Hamilton

Motivator: Measurement of G_{F}^{n} / G_{M}^{n} by the

SBS EMFFs:

June 17, 2016 3 / 13

EMFF and Diquark Correlations in Nucleons

Separated data points: G. D. Cates et al., Phys. Rev. Lett. 106, 252003 (2011).

With Proton & Neutron EMFF data flavour decomposition possible

Assuming small strange component: $F_{1,2}^u = F_{1,2}^n + 2F_{1,2}^p$ $F_{1,2}^d = 2F_{1,2}^n + F_{1,2}^p$

- Calculation using Nambu-Jona-Lassinio Model, Chiral Effective Field Theory of QCD Valid at low-intermediate energy "Parameter free" calculation. No. FF fit.
- "Soft" d Dirac FF: dominance of scalar diquark correlations
- Pauli FF: axial-vector diquark correlations and pion-cloud effects more important
- Q² range of decomposition set by availability of Gⁿ_F data

The Need for Better G_E^n / G_M^n Data

- In terms of Q² range and precision, neutron measurements still lag way behind proton measurements
- For measurements in space-like domain at medium-high Q² JLab is the only viable lab. Quasi-elastic electron scattering from neutron in ²H, ³He...
- Double polarised experiments are the way to go (since \sim 1990). Relatively low sensitivity to two-photon exchange effects compared to Rosenbluth separation. Better access to relatively small G_E (compared to G_M)
- JLab: E12-09-016 Gⁿ_E/Gⁿ_M with polarized electron beam 3He target up to Q2 of 10 (GeV/c)² ...see S. Riordan for details.
- Neutron measurements extremely challenging...independent verification of results necessary. Alternative method with polarised electron beam and polarimeter to measure polarisation transfer to recoiling neutron. Unpolarised ²H target - QE signal much cleaner
- ²H experiment should, as far as possible, match kinematic range and precision of ³He experiment.
- No recoil polarimetry measurement at $Q^2 > 1.5 \ (GeV/c)^2$

Fig. 15. Polarized electron scattering from a polarized target.

 ${}^{2}H(\overrightarrow{e},e'\overrightarrow{n})p$

Summary of Experimental Technique

Question: Obtain G_E^n/G_M^n for Q² of 2.0 - 9.3 ? $(GeV/c)^2$

Measure double-polarised

As opposed to E12-09-016 ${}^{3}\overrightarrow{He}(\overrightarrow{e}, e'n)pp$

- Final-state neutron $P_x/P_z \longrightarrow G_E^n / G_M^n$ (precess $P_z \longrightarrow P_y$ in dipole magnetic field)
- Cryogenic D₂ Target 10 cm long
- 40µA 80% polarized electron beam
- $L = 1.26 \times 10^{38} \text{ cm}^{-2} \text{s}^{-1}$
- BigBite e' detector (same configuration as E12-09-019 G_M^n/G_M^p). Large acceptance (~ 55 msr), adequate momentum resolution ($\delta p/p \sim 1\%$)
- SBS Neutron polarimeter: acceptance well matched to electron arm. Dipole magnet, integrated field ~ 2 Tm. Hadron calorimeter, high n efficiency, effective suppression soft background. Active organic-material analyzer. High rate charged-particle tracking systems
- Still examining polarimeter configurations...active/passive analyser? Geant-4 simulation

Experimental Method G_E^n Apparatus $e + d \longrightarrow e' + n + p$

G_F^n Apparatus $e + d \longrightarrow e' + n + p$

Explore possibility to use G_{En} polarimeter charge-exchange n-p Plan View of 9 (GeV/c) ²Kinematic Setting Hadron Calorimeter HCAL Dimensions mm Neutron Polarimeter Analyser Array 6500 3721 10cm LD, Target 40 µA beam 4.4 - 8.8 GeV GEM Coordinate \mathfrak{L} : 1.26 \times 10³⁸ cm⁻² s⁻¹ per nucleon Pb Shield Detector GEM Veto Tiles 1000 mm Hadron Arm Polarimeter 48D48 Dipole Electron 19.4 • Dipole to rotate n $P_2 \rightarrow P_2$ Beam sweep low-momentum background **BiaBite** 1550 differentiate n and p hit positions 1219 Analyzer array plastic scintillator **BigBite Electron Arm** GRINCH Gas Cherankey segmented Acceptance well Pb-Glass Shower Counters matched to SBS Detectors upgraded to **GEM Trackers** insensitive low-energy background increase luminosity large ϕ coverage @ forward θ capability Timing Hodoscope

Kieran Hamilton

G_E^n / G_M^n Using Recoil Polarimetery

R.G.Arnold, C.E.Carlson and F.Gross, Phys.Rev. C23(1981),363 A.I.Akhiezer et al., JEPT 33 (1957),765

$$\begin{array}{lll} P_x &=& -hP_c \frac{2\sqrt{\tau(1+\tau)}\tan\frac{\theta_c}{2}G_EG_M}{G_E^2 + \tau G_M^2(1+2(1+\tau)\tan^2\frac{\theta_c}{2})} \\ P_y &=& 0 \\ P_z &=& hP_e \frac{2\tau\sqrt{1+\tau+(1+\tau)^2\tan^2\frac{\theta_c}{2}}\tan\frac{\theta_c}{2}G_M^2}{G_E^2 + \tau G_M^2(1+2(1+\tau)\tan^2\frac{\theta_c}{2})} \\ \frac{P_x}{P_z} &=& \frac{1}{\sqrt{\tau+\tau(1+\tau)\tan^2\frac{\theta_c}{2}}} \frac{G_E}{G_M} \end{array}$$

Recoil Polarimetry...

N-N scattering $V_{so}(\mathbf{l.s}) \rightarrow$

 ϕ dependence of cross section relates to transverse polarisation components $\sigma (\theta'_n, \phi'_n) = \sigma_\circ (1 + P_e \alpha_{eff} [P_n^x \sin \phi'_n + P_y^n \cos \phi'_n])$

Precession angle of nucleon P, through dipole

$$\chi = \frac{2\mu_N}{\hbar c\beta_N} \int_L B.dl$$

Integrated Field ~2 Tm: $\chi \rightarrow 70^{\circ}$ as $\beta_n \rightarrow 1$

),363 Scattering asymmetry blocks detect neutrons or protons... Here: Fe/Plastic segmented calorimeter HCAL

Analyzer HCAL Scattered Nucleon Detector Large Φ coverage

Analyser block for neutrons active (e.g. plastic scintillator) and position sensitive. Use both elastic n-p and quasi-elastic n-p from ¹²C

Elastic N - N Scattering

- Elastic n-p or p-p for highest A_y value. LH₂ analyser possibly not feasible technically at JLab
- Proton A_y measurements C, CH₂: detect forward proton + X undetected. This does not select elastic or quasi-elastic exclusively
- Empirical p+C value of A_y ~ 0.5 of free elastic p-p scattering. Partially fermi-motion smearing of the elastic signal. Partially inelastic contamination.
- Advantageous to detect forward scattered nucleon. Smaller spread in angles. High energy...threshold can be set to reject low-energy background

Peak Analysing Power of N-N Scattering A^{max} @ P_⊥ ~ 300 - 400 MeV/c ■ R. Diebold et al., PR. 35(1975), 632. S.L. Kramer et al., PR017(1978), 1709. Projection n-p momentum dependence E12-11-009 Projection n-p momentum dependence E12-12-12

- A_y for n-p (or p-n) falling rapidly with increasing neutron momentum.
- A_y for charge-exchange n-p large at sufficiently large t (θ_p ~ few deg.). No apparent strong incident momentum dependence of A_y
- Charge-exchange cross section factor ~ 10 lower than n-p. SAID PWA over estimates this cross section by a factor ~6.

Kieran Hamilton

G_E^n / G_M^n Methods ... Pros and Cons

Polarized Target Neutron or Polarized Recoiling Neutron?

Advantages Recoil Polarimetry

- ³He target is complex and expensive
- ²H (liquid) target offers higher luminosity (if detectors will stand the radiation load)
- Quasi-elastic scattering on ²H gives a cleaner signal than ³He...less non-elastic contamination
- Bound-nucleon effects smaller for ²H

Disadvantages Recoil Polarimetry

- For n-p analysing power A_y prop 1/p_N Experiment FOM prop A_y² (or P²_{target}) A_y \sim 0.05, P_{target} \sim 0.6
- Nucleon polarimeter has relatively low detection efficiency (n scattering)
- Up to now no recoil-polarimetry measurement beyond $Q^2 = 1.5 (GeV/c)^2$ Hall-C *Plaster et al, PRC 73,(2006), 025205*

Take home message from the plot:

- Hydrogen in principle the best analyser
- C, CH₂ used in practice
- For neutrons can use plastic scintillator or Cherenkov ...active analyzer highly desirable to reconstruct scattering kinematics

Peak Analysing Power of N-N Scattering $A_y^{max} @ p_{\perp} \sim 300 - 400 \text{ MeV/c}$

R. Diebold et al., PR. 35(1975), 632.
S.L. Kramer et al., PRD17(1978), 1709.
Projection n-p momentum dependence E12-11-009
Projection n-p momentum dependence PR12-12-12

Preliminary: Polarimeter Figure of Merit

Monte Carlo: ROOT & G4

- Generate elastic n(e,e'n) produce n-momentum distribution
- $\begin{array}{c} \begin{array}{c} 1 & n_{1} \\ (ers from a_{n}, \\ rICAL \\ (for cross section SAID PW_{P}, \\ (1 + (effective# protons in C)] \\ Scale charge-exchange by 0.16 \\ (for cross from G4 ~ 12-13\%) \\ (for$ n-p cross section SAID PWA.

- A for n-p scatter (forward n)
- A charge-exch. n-p (forward p)

$$\begin{split} A^{H}_{Y} &= t, -t < 0.4; \; A^{H}_{Y} = -0.52, -t > 0.4 \\ A^{C}_{Y} &= 0.5 \times A^{H}_{Y} \end{split}$$

SBS polarimeter sensitive to both n-p and charge-exchange n-p

Kieran Hamilton

Geant4 Model

The Geant4 Model

- Geant4.10.01: add ϕ dependence polarised nucleon elastic and QE scattering
- Record signal amplitude and time from each detector element.
- Analyse simulated data as in real experiment.
- Calculate element rates 8.8 GeV, 40 μ A on 10 cm LD₂ (L = 1.26 × 10³⁸ cm⁻²s⁻¹)
- Concentrating on polarimeter arm. Cluster analysis, energy-weighted mean hit position
- Reconstruct angle in analyser and scattering angle analyser to calorimeter. Extract ϕ dependence.

