Linearly Polarized Gluons in J/ψ and Υ Production

Sangem Rajesh IIT Bombay

HUGS-2016

Outline

Gluon TMDs

Quarkonium Models

J/ψ and Υ production

Conclusion

Transverse Momentum Dependent (TMD) Distributions

Universality

$$lp \to lX$$

TMD pdf $f(x,k_{\perp})$

Non-trivial Universality

 $lp \to lhX$ $pp \to hX$

Parameterization of gluon correlator at "Leading Twist" is

$$= -\frac{1}{2x} \left\{ g_T^{\mu\nu} f_1^g(x, \mathbf{k}_{\perp}^2) - \left(\frac{k_{\perp}^{\mu} k_{\perp}^{\nu}}{M_h^2} + g_T^{\mu\nu} \frac{\mathbf{k}_{\perp}^2}{2M_h^2} \right) h_1^{\perp g}(x, \mathbf{k}_{\perp}^2) \right\}$$

Gluons	Unpolarized	Circularly	Linearly	
Target				
Unpolarized	f_1^g		$h_1^{\perp g}$	
Longitudinal		g_{1L}^g		D. Boer et a
Transverse	$f_{1T}^{\perp g}$	g_{1T}^g	$h_{1T}^g, h_{1T}^{\perp g}$	arXive 1507.05267 4

al.

Linearly Polarized Gluons

No experimental investigation has been carried out to extract the $h_1^{\perp g}$ until now .

- * Theoretical upper bound of $h_1^{\perp g}$ is only known. D. Boer et al. PRL 106 132001 (2011) In proton-proton collision
- $\star \qquad pp o \gamma \gamma X \,\, {
 m at \,\, RHIC}$ Qiu, Schlegel, Vogelsang, PRL 107, 062001 (2011)
- $pp o \Upsilon \gamma X ext{ at LHC}$ Dunnen, Lansberg, Pisano, Schlegel, PRL 112, 212001 (2014)
- $\star \qquad pp
 ightarrow HX$ D. Boer et al. PRL 108, 032002 (2012)
 - $pp \rightarrow \eta_{c,b}$ or $\chi_{c,b} + X$ at LHCb and AFTER D. Boer, C. Pisano, PRD 86, 094007 (2012)

In electron-proton scattering

 \star

$$ep \to eQ\bar{Q}X \text{ or } e + jet + jet + X$$

C. Pisano et al. JHEP 10 (2013) 024

Quarkonium Models

Color Singlet Model (CSM)

Color Octet Model (COM)

Color Evaporation Model (CEM)

$$\sigma_{J/\psi,\Upsilon} = \hat{\sigma} \times \text{Nonperturbative term}$$

$pp \to J/\psi \ or \ \Upsilon + X$

The cross section for Quarkonium production in CEM is

$$\sigma = \frac{\rho}{9} \int_{2m_Q}^{2m_{Q\overline{q}}} dM \frac{d\hat{\sigma}_{Q\overline{Q}}}{dM}$$

Where $m_Q = m_c(m_b)$ and $m_{Q\bar{q}} = m_D(m_B)$ for charmonium (bottomonium)

$$pp \to J/\psi \text{ or } \Upsilon + X$$

Using QCD factorization theorem

$$d\sigma = \frac{\rho}{9} \int dx_a dx_b d^2 \mathbf{k}_{\perp a} d^2 \mathbf{k}_{\perp b} \Biggl\{ \Phi_g^{\mu\nu}(x_a, \mathbf{k}_{\perp a}) \Phi_{g\mu\nu}(x_b, \mathbf{k}_{\perp b}) d\hat{\sigma}^{gg \to Q\overline{Q}} + \left[\Phi^q(x_a, \mathbf{k}_{\perp a}^2) \Phi^{\bar{q}}(x_b, \mathbf{k}_{\perp b}^2) + \Phi^{\bar{q}}(x_a, \mathbf{k}_{\perp a}^2) \Phi^q(x_b, \mathbf{k}_{\perp b}^2) \right] d\hat{\sigma}^{q\bar{q} \to Q\overline{Q}} \Biggr\}$$

TMDs Parameterization

TMDs exhibit Gaussian distribution

 $pp \to J/\psi \text{ or } \Upsilon + X$

Model independent theoretical upper bound

$$\frac{\mathbf{k}_{\perp}^2}{2M_h^2} |h_1^{\perp g}(x, \mathbf{k}_{\perp}^2)| \le f_1^g(x, \mathbf{k}_{\perp}^2)$$

D. Boer et al. PRL 106 132001 (2011)

Assuming linearly polarized gluons also exhibit Gaussian form

$$h_{1}^{\perp g}(x, \mathbf{k}_{\perp}^{2}) = \frac{M_{h}^{2} f_{1}^{g}(x, Q^{2})}{\pi \langle k_{\perp}^{2} \rangle^{2}} \frac{2(1-r)}{r} e^{1 - \mathbf{k}_{\perp}^{2} \frac{1}{r \langle k_{\perp}^{2} \rangle}}$$

0 < r < 1

D. Boer, C. Pisano, PRD 86, 094007 (2012)

Differential Cross Section in DGLAP approach

$$\begin{aligned} \frac{d^{2}\sigma^{ff}}{dydq_{T}^{2}} &= \frac{\beta^{2}\rho}{36s\pi^{2}} \int_{4m_{Q}^{2}}^{4m_{Q}^{2}\bar{q}} dM^{2} \int d\phi_{q_{T}} \int dk_{\perp a} k_{\perp a} \int d\phi_{k_{\perp a}} e^{-\Delta\beta} \\ &\times \left\{ f_{1}^{g}(x_{a}) f_{1}^{g}(x_{b}) \hat{\sigma}^{gg \to Q\overline{Q}}(M^{2}) + \frac{1}{2} \sum_{q} \left[f_{1}^{q}(x_{a}) f_{1}^{\bar{q}}(x_{b}) + f_{1}^{\bar{q}}(x_{a}) f_{1}^{q}(x_{b}) \right] \\ &\times \hat{\sigma}^{q\bar{q} \to Q\overline{Q}}(M^{2}) \right\} \end{aligned}$$

$$\begin{aligned} \frac{d^2 \sigma^{hh}}{dy dq_T^2} &= \frac{\beta^4 \rho (1-r)^2}{18 s r^2 \pi^2} \int_{4m_Q^2}^{4m_Q^2} dM^2 \int d\phi_{q_T} \int dk_{\perp a} k_{\perp a} \int d\phi_{k_{\perp a}} \\ &\times \left[\frac{1}{2} k_{\perp a}^4 - \frac{1}{2} k_{\perp a}^2 q_T^2 - q_T k_{\perp a}^3 \cos(\phi_{k_{\perp a}} - \phi_{q_T}) + q_T^2 k_{\perp a}^2 \cos^2(\phi_{k_{\perp a}} - \phi_{q_T}) \right] \\ &\times e^{[2 - \frac{\beta}{r} \Delta]} f_1^g(x_a) f_1^g(x_b) \hat{\sigma}^{gg \to Q\overline{Q}} (M^2) \end{aligned}$$

where $\Delta = 2k_{\perp a}^2 + q_T^2 - 2q_T k_{\perp a} \cos(\phi_{k_{\perp a}} - \phi_{q_T})$ and $\beta = \frac{1}{\langle k_{\perp}^2 \rangle}$

q_T Spectrum in DGLAP Evolution

Rapidity Spectrum in DGLAP Evolution

Resummation of Sudakov logarithms

The region of low q_T is strongly influenced by initial state gluon radiation showers

These additional gluon radiation from initial state partons leads to logarithmic corrections for each gluon radiation of the form

$$\alpha_s \log(\frac{Q^2}{q_T^2})$$

Collins Soper Sterman (CSS) resummation formalism has been used to resum the large logarithmic terms to all order in α_s

TMD Evolution

CSS TMD Evolution

$$f(x, b_{\perp}, Q_f, \zeta) = f(x, b_{\perp}, Q_i, \zeta) R_{pert} \left(Q_f, Q_i, b_*\right) R_{NP} \left(Q_f, Q_i, b_{\perp}\right)$$

$$R_{pert} \left(Q_f, Q_i, b_*\right) = \exp\left\{-\int_{Q_i}^{Q_f} \frac{d\mu}{\mu} \left(A \log\left(\frac{Q_f^2}{\mu^2}\right) + B\right)\right\}$$

$$R_{NP} = \exp\left\{-\left[\frac{g_2}{2}\log\frac{Q_f}{2Q_0} + \frac{g_1}{2}\left(1 + 2g_3\log\frac{10xx_0}{x_0 + x}\right)\right]b_{\perp}^2\right\}$$

D. Boer, W. J. den Dunnen, Nucl. Phys. B 886 (2014) 421

where
$$Q_i = \frac{2e^{-0.577}}{b_*}, \ Q_f = Q \text{ and } \zeta = Q_f^2$$

$$b_* = \frac{b_\perp}{\sqrt{1 + (\frac{b_\perp}{b_{\max}})^2}} \quad \text{, } A = \sum_{n=1}^\infty \left(\frac{\alpha_s(\mu)}{\pi}\right)^n A_n \text{ , } B = \sum_{n=1}^\infty \left(\frac{\alpha_s(\mu)}{\pi}\right)^n B_n$$

Differential Cross Section in TMD Evolution approach

$$\begin{aligned} \frac{d^2 \sigma^{ff}}{dy dq_T^2} &= \frac{\rho}{36s} \int_{4m_Q^2}^{4m_Q^2} dM^2 \int_0^\infty b_\perp db_\perp J_0(q_T b_\perp) f_1^g(x_a, c/b_*) f_1^g(x_b, c/b_*) \hat{\sigma}^{gg \to Q\overline{Q}}(M^2) \\ &\exp\left\{-2 \int_{c/b_*}^Q \frac{d\mu}{\mu} \left(A \log\left(\frac{Q^2}{\mu^2}\right) + B\right)\right\} \exp\left\{-\left[0.184 \log\frac{Q}{2Q_0} + 0.332\right] b_\perp^2\right\} \end{aligned}$$

$$\begin{aligned} \frac{d^2 \sigma^{hh}}{dy dq_T^2} &= \frac{\rho C_A^2}{36s \pi^2} \int_{4m_Q^2}^{4m_Q^2} dM^2 \int_0^\infty b_\perp db_\perp J_0(q_T b_\perp) \alpha_s^2(c/b_*) \hat{\sigma}^{gg \to Q\overline{Q}}(M^2) \\ &\int_{x_a}^1 \frac{dx_1}{x_1} \left(\frac{x_1}{x_a} - 1\right) f_1^g(x_1, c/b_*) \int_{x_b}^1 \frac{dx_2}{x_2} \left(\frac{x_2}{x_b} - 1\right) f_1^g(x_2, c/b_*) \\ &\exp\left\{-2 \int_{c/b_*}^Q \frac{d\mu}{\mu} \left(A \log\left(\frac{Q^2}{\mu^2}\right) + B\right)\right\} \exp\left\{-\left[0.184 \log\frac{Q}{2Q_0} + 0.332\right] b_\perp^2\right\} \end{aligned}$$

 q_T Spectrum in TMD Evolution

Results in TMD Evolution

Conclusion

The q_T and y distributions of quarkonium can been modulated by the presence of linearly polarized gluons in unpolarized proton proton collision.

- Hence, the production of quarkonium is a promising process to probe not only the $h_1^{\perp g}$ but also unpolarized TMD pdf f_1^g .
- ★ It would be interesting to include the linearly polarized gluon contribution in the cross section to fit the experimental data to the extent of reasonable accuracy.

Thank you

Backup Rapidity Spectrum in DGLAP Evolution

$$r = \frac{1}{3}$$

 $\langle k_{\perp}^2 \rangle = 1 \ {\rm GeV^2}$

Backup Rapidity Spectrum in TMD Evolution

Backup **DGLAP and TMD Comparison**

5

4