Extraction of Hadron Resonances in Lattice QCD

Bijit Singha

Carnegie Mellon University

April 27, 2016

Motivation

- use lattice methods to explore the low-lying stationary states of QCD in a finite volume
- extract hadron resonance properties: masses, decay widths
- explore the possibilities for exotic hadrons: e.g. tetraquarks, glueballs
- understand the nature of controversial resonances: e.g. $\Lambda(1405)$

Content

1. Introduction

- two important equations
- QCD action
- Operator smearing and displacements

2. hadron operator construction

- single hadron operator
- projection onto O_{h}^{D} Irreps
- multi-hadron operators

3. calculating correlation functions

- stochastic estimation of quark propagator
- estimating quark lines using stochastic LapH

4. extracting energies from correlation functions

- a toy model
- analysis of $T_{1 u}^{+}$channel energies

5. work in progress: Effective Hamiltonian methods

Path Integral on Lattice

$$
C_{i j}(t)=\langle 0| O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right)|0\rangle=\sum\langle 0| O_{i}|n\rangle\langle n| \bar{O}_{j}|0\rangle e^{-E_{n} t}
$$

- RHS to extract matrix elements of the operators and spectrum of the theory

$$
\lim _{T \rightarrow \infty} \frac{1}{Z_{t}} \operatorname{tr}\left[e^{-(T-t) \hat{H}} \hat{O}_{2} e^{-t \hat{H}} \hat{O}_{1}\right]=\frac{1}{Z_{t}} \int D[\phi] e^{-S_{E}[\phi]} O_{2}[\phi(., t)] O_{1}[\phi(., 0)]
$$

- The integral is over all possible configurations of the field ϕ
- Two operators \hat{O}_{i} 's are translated to functionals
- RHS evaluated numerically on the lattice

Lattice QCD Basics

- define QCD on set of discrete points in Euclidean spacetime in a finite volume
- introduce simplest, gauge-invariant, discretized action that reduces to the continuum QCD action in continuum and thermodynamic limit
- quark field: Dirac 4-spinors $\psi_{\alpha c}^{f}(x), \bar{\psi}_{\alpha c}^{f}(x)$; gauge field $A_{c d}^{\mu}(x)$

QCD action

- The Fermionic Part

$$
\begin{aligned}
& S_{F}[\psi, \bar{\psi}, A]=\sum_{n=1}^{N_{f}} \int d^{4} x \bar{\psi}^{(f)}(x)\left(\gamma_{\mu}\left(\partial_{\mu}+i A_{\mu}(x)\right)+m^{(f)}\right) \psi^{(f)}(x) \\
& =\sum_{n=1}^{N_{f}} \int d^{4} x \bar{\psi}^{(f)}(x)_{\alpha c}\left(\left(\gamma_{\mu}\right)_{\alpha \beta}\left(\delta_{c d} \partial_{\mu}+i A_{\mu}(x)_{c d}\right)+m^{(f)} \delta_{\alpha \beta} \delta_{c d}\right) \psi^{(f)}(x)_{\alpha c}
\end{aligned}
$$

- The Gluonic Part

$$
S_{G}[A]=\frac{1}{2 g^{2}} \int d^{4} x \operatorname{tr}\left[F_{\mu \nu}(x) F_{\mu \nu}(x)\right]
$$

Introduction of Gauge-link Variables

$$
U_{-\mu}(n) \equiv U_{\mu}(n-\hat{\mu})^{\dagger}
$$

$U_{\mu}(n)$

$$
\begin{gathered}
\psi^{\prime}(n)=\Omega(n) \psi(n) ; \bar{\psi}^{\prime}(n)=\bar{\psi}(n) \Omega^{\dagger}(n) \\
U_{\mu}^{\prime}(n)=\Omega(n) U_{\mu} \Omega^{\dagger}(n+\mu)
\end{gathered}
$$

- The lattice version for free Fermion action reads

$$
S_{F}[\psi, \bar{\psi}]=a^{4} \sum_{n \in \Lambda} \bar{\psi}(n)\left(\sum_{\mu=1}^{4} \gamma_{\mu} \frac{U_{\mu} \psi(n+\hat{\mu})-U_{-\mu} \psi(n-\hat{\mu})}{2 a}+m \psi(n)\right)
$$

- gauge fields introduced through gauge-link variables

$$
U_{\mu}(x)=\mathcal{P} \exp \left\{i g \int_{x}^{x+\hat{\mu}} d \eta \cdot A(\eta)\right\} \approx \exp \left\{i g a A_{\mu}(x)\right\}
$$

Operator Smearing and Displacements

- Smearing quark fields reduces the excited state contamination

- Smearing gauge-link fields reduces the error for displaced operators
- Displacement in different directions: orbital structure; Displacement by

 different distances: radial structure

Constructing Single-hadron Operators

- building blocks: covariantly-displaced LapH-smeared quark fields
- stout-smeared links $\widetilde{U}_{j}(x)$
- 3d gauge-covariant Laplacian $\widetilde{\Delta}$ in terms of \widetilde{U}
- Laplacian-Heaviside (LapH) smeared quark fields

$$
\widetilde{\psi}_{a \alpha}(x)=\mathcal{S}_{a b}(x, y) \psi_{b \alpha}(y), \quad \mathcal{S}=\Theta\left(\sigma_{s}^{2}+\widetilde{\Delta}\right)
$$

- displaced quark fields:

$$
q_{a \alpha j}^{A}=D^{(j)} \widetilde{\psi}_{a \alpha}^{(A)}, \quad \bar{q}_{a \alpha j}^{A}=\widetilde{\bar{\psi}}_{a \alpha}^{(A)} \gamma_{4} D^{(j) \dagger}
$$

- displacement $D^{(j)}$ is product of smeared links:

$$
D^{(j)}\left(x, x^{\prime}\right)=\widetilde{U}_{j_{1}}(x) \widetilde{U}_{j_{2}}\left(x+d_{2}\right) \widetilde{U}_{j_{3}}\left(x+d_{3}\right) \ldots \widetilde{U}_{j_{p}}\left(x+d_{p}\right) \delta_{x^{\prime}, x+d_{p+1}}
$$

Extended Operators for Single Hadrons

- quark displacements build up orbital, radial structure

Meson configurations

Baryon configurations

8	8	- -0	$\stackrel{i}{0}$		
SS	SD	DDI	DDL	TDT	TDO

- eg \rightarrow single-site: $\epsilon_{a b c} \widetilde{\psi}_{a \alpha}^{A} \widetilde{\psi}_{b \beta}^{B} \widetilde{\psi}_{c \gamma}^{C}$
singly-displaced: $\epsilon_{a b c} \widetilde{\psi}_{a \alpha}^{A} \widetilde{\psi}_{b \beta}^{B}\left(\widetilde{D}_{j}^{(p)} \widetilde{\psi}\right)_{c \gamma}^{C}$
doubly-displaced L: $\epsilon_{a b c} \widetilde{\psi}_{a \alpha}^{A}\left(\widetilde{D}_{j}^{(p)} \widetilde{\psi}\right)_{b \beta}^{B}\left(\widetilde{D}_{k}^{(p)} \widetilde{\psi}\right)_{c \gamma}^{C}, j \neq k$

Why an Anisotropic Lattice?

$$
C_{i j}(t)=\langle 0| O_{i}\left(t+t_{0}\right) \bar{O}_{j}\left(t_{0}\right)|0\rangle=\sum_{n}\langle 0| O_{i}|n\rangle\langle n| \bar{O}_{j}|0\rangle e^{-E_{n} t}
$$

- temporal correlation function: errors generally increase as t increases
- to increase 'good' data points, we need a fine temporal spacing
- coarser spatial directions reduce computational needs
- as a trade-off, this raises the need for improved actions

Quantum Numbers in Toroidal Box

- periodic boundary conditions in cubic box
- not all directions equivalent \Rightarrow using $J^{P C}$ is wrong!!
- Which J-irreps of $S O(3)$ map into which irreps of octahedral group O ? \rightarrow Subduction
- label stationary states of QCD in a periodic box using irreps of cubic space group even in continuum limit
- spatial inversion: double point group O_{h}^{D}

$$
A_{1 a}, A_{2 a}, E_{a}, T_{1 a}, T_{2 a}, \quad G_{1 a}, G_{2 a}, H_{a}, \quad a=g, u
$$

Spin Content of Cubic Box Irreps

- $n_{J}^{\Gamma}=\frac{1}{g O} \sum_{p} N_{p} \chi_{\downarrow O}^{J}\left(C_{p}\right) \chi^{\Gamma}\left(C_{p}\right)^{*}$
- numbers of occurrences of Λ irreps in subduced reps of $S O(3)$ restricted to O

J	A_{1}	A_{2}	E	T_{1}	T_{2}	J	G_{1}	G_{2}	H
0	1	0	0	0	0	$\frac{1}{2}$	1	0	0
1	0	0	0	1	0	$\frac{3}{2}$	0	0	1
2	0	0	1	0	1	$\frac{5}{2}$	0	1	1
3	0	1	0	1	1	$\frac{7}{2}$	1	1	1
4	1	0	1	1	1	$\frac{9}{2}$	1	0	2
5	0	0	1	2	1	$\frac{11}{2}$	1	1	2
6	1	1	1	1	2	$\frac{13}{2}$	1	2	2
7	0	1	1	2	2	$\frac{15}{2}$	1	1	3

Construction of Elemental Operators and Projection onto

O_{h}^{D} Irreps

- Meson: $\bar{\Phi}_{\alpha \beta}^{A B}(\boldsymbol{p}, t)=\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot\left(\mathbf{x}+\frac{1}{2}\left(\boldsymbol{d}_{\alpha}+\boldsymbol{d}_{\beta}\right)\right)} \delta_{a b} \bar{q}_{b \beta}^{B}(\boldsymbol{x}, t) q_{a \alpha}^{A}(\boldsymbol{x}, t)$
- Baryon: $\bar{\Phi}_{\alpha \beta \gamma}^{A B C}(\boldsymbol{p}, t)=\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot \mathbf{x}} \varepsilon_{a b c} \bar{q}_{c \gamma}^{C}(\boldsymbol{x}, t) \bar{q}_{b \beta}^{B}(\boldsymbol{x}, t) \bar{q}_{a \alpha}^{A}(\boldsymbol{x}, t)$
- group-theory projections onto irreps of lattice symmetry group

$$
\begin{aligned}
& \bar{M}_{l}(t)=c_{\alpha \beta}^{(l) *} \bar{\Phi}_{\alpha \beta}^{A B}(t) \quad \bar{B}_{l}(t)=c_{\alpha \beta \gamma}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma}^{A B C}(t) \\
& B_{P i}^{\Lambda \lambda F}(t)=\frac{d_{\Lambda}}{g_{O_{h}^{D}}} \sum_{R \in O_{h}^{D}} \Gamma_{\lambda \mu}^{\Lambda}(R) U_{R} B_{i}^{F}(t) U_{R}^{\dagger}
\end{aligned}
$$

- Partner operators in other rows are obtained using transfer operation of $B_{i}^{\Lambda \lambda F}(t)$
- definite momentum p, irreps of little group of p

Two-hadron Operators

- our approach: superposition of products of single-hadron operators of definite momenta

$$
c_{\boldsymbol{p}_{a} \lambda_{a} ; \boldsymbol{p}_{b} \lambda_{b}}^{I_{3 a} I_{3}} B_{\boldsymbol{p}_{a} \Lambda_{a} \lambda_{a} i_{a}}^{I_{a} I_{3 a} S_{a}} B_{\boldsymbol{p}_{b} \Lambda_{b} \lambda_{b} i_{b}}^{I_{b} I_{3 b} S_{b}}
$$

- fixed total momentum $\boldsymbol{p}=\boldsymbol{p}_{a}+\boldsymbol{p}_{b}$, fixed $\Lambda_{a}, i_{a}, \Lambda_{b}, i_{b}$
- group-theory projections onto little group of \boldsymbol{p} and isospin irreps
- efficient creating large numbers of two-hadron operators
- generalizes to three, four, . . . hadron operators

Monte Carlo Estimate of Path Integrals

- Remember: the QCD action

$$
S[\bar{\psi}, \psi, U]=\bar{\psi} K[U] \psi+S_{G}[U]
$$

- after quark integration,

$$
C_{i j}(t)=\frac{\int D[U] \operatorname{det} K[U] W\left[K^{-1}(U)\right] \exp \left(-S_{G}[U]\right)}{\int D[U] \operatorname{det} K \exp \left(-S_{G}[U]\right)}
$$

- We can use Monte Carlo method now. BUT:
- inclusion of $\operatorname{det} K[U]$ and evaluation of $K^{-1}[U]$ are computationally expensive!!
- $N_{\text {tot }}=N_{\text {site }} N_{\text {spin }} N_{\text {color }}$
- for $32^{3} \times 256$ lattice, $N_{\text {tot }} \sim 101$ million

Stochastic Estimation of Quark Propagator

- Need an approximation on the inverse of the Dirac matrix $K[U]$
- Use noise vectors η such that $E\left(\eta_{i}\right)=0$ and $E\left(\eta_{i} \eta_{j}^{*}\right)=\delta_{i j}$
- $Z_{4}=\{+1,-1,+i,-i\}$ noise
- Generate N_{R} noise vectors $\eta^{(r)}$ and solve $K[U] X^{(r)}=\eta^{(r)}$
- Then $E\left(X_{i} \eta_{j}^{*}\right)=E\left(K_{i k}^{-1} \eta_{k} \eta_{j}^{*}\right)=K_{i k}^{-1} E\left(\eta_{k} \eta_{j}^{*}\right)=K_{i j}^{-1}$

$$
\Longrightarrow K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} X_{i}^{(r)} \eta_{j}^{(r) *}
$$

Can We Make this Exact?

- For any noise vector $\eta^{(r)}$,

Suppose $\eta_{j}^{(r)}=\sum_{s=1}^{N} \eta_{j}^{(r)[s]}$, where $\eta_{j}^{(r)[s]}=\eta_{j}^{(r)} \delta_{j s}$ (no sum over j), then

$$
\sum_{s=1}^{N} X_{i}^{(r)[s]} \eta_{j}^{(r)[s] *}=K_{i j}^{-1} \eta_{j}^{(r)} \eta_{j}^{(r) *}=K_{i j}^{-1}
$$

\rightarrow Exact for Z_{4} noise

- But N solution vectors $X_{i}^{(r)[s]}$ had to be computed. Not feasible!

Variance Reduction through Noise Dilution

- Introduce a complete set of projection operators $P^{(a)}$:

$$
\begin{aligned}
P^{(a)} P^{(b)} & =\delta^{a b} P^{(a)}, \quad \sum_{a} P^{(a)}=1, \quad P^{(a) \dagger}=P^{(a)} \\
\eta_{k}^{[a]} & =P_{k k^{\prime}}^{(a)} \eta_{k^{\prime}}, \quad \eta_{j}^{[a] *}=P_{j j^{\prime}}^{(a) *} \eta_{j^{\prime}}^{*}
\end{aligned}
$$

- Define $X^{[a]}$ to be the solution of $K_{i k} X_{k}^{[a]}=\eta_{i}^{[a]}$, then

$$
\begin{gathered}
\sum_{a} E\left(X_{i}^{[a]} \eta_{j}^{[a] *}\right)=K_{i k}^{-1} \sum_{a} E\left(\eta_{k}^{[a]} \eta_{j}^{[a] *}\right)=K_{i k}^{-1} \sum_{a} P_{k j}^{(a)}=K_{i k}^{-1} \\
\Longrightarrow K_{i j}^{-1} \approx \frac{1}{N_{R}} \sum_{r=1}^{N_{R}} \sum_{a} X^{(r)[a]} \eta_{j}^{(r)[a] *}
\end{gathered}
$$

- An improvement because $\operatorname{Var}\left(\sum_{a} \eta_{k}^{[a]} \eta_{j}^{[a] *}\right)<\operatorname{Var}\left(\eta_{k} \eta_{j}^{*}\right)$

Laplacian Heaviside (LapH) Smearing

- why bother finding propagator to/from high energy modes?
- use the N_{v} lowest eigenvectors of the covariant Laplacian to define the LapH subspace

Correlators and quark line diagrams

- baryon correlator

$$
C_{l \bar{l}} \approx \frac{1}{N_{R}} \sum_{r} \sum_{d_{A} d_{B} d_{C}} \mathcal{B}_{l}^{(r)\left[d_{A} d_{B} d_{C}\right]}\left(\varphi^{A}, \varphi^{B}, \varphi^{C}\right) \mathcal{B}_{\bar{l}}^{(r)\left[d_{A} d_{B} d_{C}\right]}\left(\varrho^{A}, \varrho^{B}, \varrho^{C}\right)^{*}
$$

- express diagrammatically

- meson correlator

Excited States from Correlation Matrices

- in finite volume, energies are discrete

$$
C_{i j}(t)=\sum_{n} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form
- define new correlation matrix $\widetilde{C}(t)$ using a single rotation

$$
\widetilde{C}(t)=U^{\dagger} C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2} U
$$

- columns of U are eigenvectors of $C\left(\tau_{0}\right)^{-1 / 2} C\left(\tau_{D}\right) C\left(\tau_{0}\right)^{-1 / 2}$
- choose τ_{0} and τ_{D} large enough so $\widetilde{C}(t)$ diagonal for $t>\tau_{D}$
- effective energies

$$
\widetilde{m}_{\alpha}^{\text {eff }}(t)=\frac{1}{\Delta t} \ln \left(\frac{\widetilde{C}_{\alpha \alpha}(t)}{\widetilde{C}_{\alpha \alpha}(t+\Delta t)}\right)
$$

tend to N lowest-lying stationary state energies in a channel

Correlator matrix toy model

- Theorem: For every $t \geq 0$, let $\lambda_{n}(t)$ be the eigenvalues of an $N \times N$ Hermitian correlation matrix $C(t)$ ordered such that $\lambda_{0} \geq \lambda_{1} \geq \cdots \geq \lambda_{N-1}$, then

$$
\begin{array}{r}
\lim _{t \rightarrow \infty} \lambda_{n}(t)=b_{n} e^{-E_{n} t}\left[1+O\left(e^{-t \Delta_{n}}\right)\right], \\
b_{n}>0, \quad \Delta_{n}=\min _{m \neq n}\left|E_{n}-E_{m}\right| .
\end{array}
$$

- Example: $N_{e}=200$ eigenstates with energies

$$
E_{0}=0.20, \quad E_{n}=E_{n-1}+\frac{0.08}{\sqrt{n}}, \quad n=1,2, \ldots, N_{e}-1
$$

for $N \times N$ correlator matrix, $N=12$, overlaps

$$
Z_{j}^{(n)}=\frac{(-1)^{j+n}}{1+0.05(j-n)^{2}}
$$

Correlator matrix toy model (con't)

- toy model $N_{e}=200$ with 12×12 correlator matrix $C(t)$

- left: effective energies of diagonal elements of correlator matrix
- middle: effective energies of eigenvalues of $C(t)$
- right: effective energies of eigenvalues of $C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2}$ for $\tau_{0}=1$

Ensembles and run parameters

- focusing on two Monte Carlo ensembles
- $\left(32^{3} \mid 240\right): 412$ configs $32^{3} \times 256, \quad m_{\pi} \approx 240 \mathrm{MeV}, \quad m_{\pi} L \sim 4.4$
- $\left(24^{3} \mid 390\right): 551$ configs $24^{3} \times 128, \quad m_{\pi} \approx 390 \mathrm{MeV}, \quad m_{\pi} L \sim 5.7$
- anisotropic improved gluon action, clover quarks (stout links)
- QCD coupling $\beta=1.5$ such that $a_{s} \sim 0.12 \mathrm{fm}, a_{t} \sim 0.035 \mathrm{fm}$
- strange quark mass $m_{s}=-0.0743$ nearly physical (using kaon)
- work in $m_{u}=m_{d}$ limit so $S U(2)$ isospin exact
- generated using RHMC, configs separated by 20 trajectories
- stout-link smearing in operators $\xi=0.10$ and $n_{\xi}=10$
- LapH smearing cutoff $\sigma_{s}^{2}=0.33$ such that
- $N_{v}=112$ for 24^{3} lattices
- $N_{v}=264$ for 32^{3} lattices
- source times:
- 4 widely-separated t_{0} values on 24^{3}
- $8 t_{0}$ values used on 32^{3} lattice

$I=1, S=0, T_{1 u}^{+}$Channel Energies

- Effective energies for first 25 levels (B. Fahy, PhD thesis)
- Energies obtained using a two-exponential fit

$I=1, S=0, T_{1 u}^{+}$Channel Energies, Continued

- Effective energies for next 25 levels
- Energies obtained using a two-exponential fit

Level identification

- level identification inferred from Z overlaps with probe operators
- keep in mind:
- probe operators \bar{O}_{j} act on vacuum, create a "probe state" $\left|\Phi_{j}\right\rangle$,

Z's are overlaps of probe state with each eigenstate

$$
\left|\Phi_{j}\right\rangle \equiv \bar{O}_{i}|0\rangle, \quad Z_{j}^{(n)}=\left\langle\Phi_{j} \mid n\right\rangle
$$

- identify by dominant probe state(s) whenever possible

Level identification

- overlaps for various operators

$I=1, S=0, T_{1_{\mu}}^{+}$Channel Staircase Plot

Tlup

Lowest 50 energies in the $I=1, S=0, T_{1 u}^{+}$channel extracted from a 63×63 correlator matrix. Uses 412 configs on a clover-improved anisotropic $32^{3} \times 256$ lattice with $m_{\pi} \approx 240 \mathrm{MeV}$. Total $P=0$.

Single Hadron $T_{1 u}^{+}$Spectrum Compared to Experiment

- right: energies of $\bar{q} q$-dominant states as ratios over m_{K} for $\left(32^{3} \mid 240\right)$ ensemble (resonance precursor states)
- left: experiment

Effective Hamiltonian method

- We use "Lüscher method" to extract resonance information from finite volume energies: complicated
- Working on possible alternative: Effective Hamiltonian (Wu et al)
- kinetic terms

$$
|\sigma\rangle m_{\sigma}\langle\sigma|+\left|\alpha_{1} \alpha_{2} \vec{k}\right\rangle\left(\sqrt{m_{\alpha_{1}}^{2}+\vec{k}^{2}}+\sqrt{m_{\alpha_{2}}^{2}+\vec{k}^{2}}\right)\left\langle\alpha_{1} \alpha_{2} \vec{k}\right|
$$

- interaction $1-2$ and $2-2$ terms

$$
|\sigma\rangle g(k)\left\langle\alpha_{1} \alpha_{2} \vec{k}\right|+\left|\alpha_{1} \alpha_{2} \overrightarrow{k_{1}}\right\rangle g\left(k_{1}, k_{2}\right)\left\langle\beta_{1} \beta_{2} \overrightarrow{k_{2}}\right|
$$

- momentum dependence for various interactions to have form $\frac{a}{1+b \vec{k}^{2}}$ for S-wave and $k\left(\frac{a}{1+b \vec{k}^{2}}\right)^{\frac{3}{2}}$ for P-wave
- parameters of Hamiltonian determined from fits to finite-volume spectra
- Lippmann-Schwinger (or other methods) to extract infinite-volume resonances

Applying to Lattice QCD

- We can analyze the spectra in different symmetry channels with definite I, I_{3}, S, η, and G - parity
- consider zero total momentum first
- An important formula: $\left|\Lambda_{P} \lambda\right\rangle=\sum \Gamma_{\lambda \lambda}^{\Lambda_{P} *}(R) \hat{U}_{R}\left|J^{P} m_{J}\right\rangle$
- We can retain J as it is invariant under rotational and parity transformation: $\left|\Lambda_{P} \lambda J n \xi\right\rangle=\sum c_{J m_{J}}^{\Lambda \lambda n}\left|J^{P} m_{J} \xi\right\rangle$
- Prob 1. States with different J's can give non zero matrix elemnts if they the same sector?
- Prob 2. Same J could show up in different lattice irreps?

The Effective Hamiltonian in Lattice

- To understand the questions, let's write the hamiltonian explicitly in $J L S$ basis:
- $\hat{H}=\hat{H}_{0}+\hat{H}_{I}$
- $\hat{H}_{0}=\sum\left|\sigma \Lambda_{P}^{G} \lambda J n i\right\rangle M_{\sigma J i}^{\Lambda_{P}^{G}}\left\langle\sigma \Lambda_{P}^{G} \lambda J n i\right|$

$$
+\sum\left|\alpha \Lambda_{P}^{G} \lambda J L=J-S, S s_{1} s_{2}, \eta_{1} \eta_{2}: \eta_{1} \eta_{2}(-1)^{J-S}=P ; n i j\right\rangle N\langle\ldots|
$$

- $\hat{H}_{I}(1 \rightarrow 2)=$

$$
\sum\left|\sigma \Lambda_{P}^{G} \lambda J n i\right\rangle g\left\langle\alpha \Lambda_{P}^{G} \lambda J L=J-S, S s_{1} s_{2}, \eta_{1} \eta_{2}: \eta_{1} \eta_{2}(-1)^{J-S}=P ; n j k\right.
$$

- $\hat{H}_{I}(2 \rightarrow 2)=$

$$
\sum\left|\alpha \Lambda_{P}^{G} \lambda J L=J-S, S s_{1} s_{2}, \eta_{1} \eta_{2}: \eta_{1} \eta_{2}(-1)^{J-S}=P ; n i j\right\rangle v
$$

$$
\left\langle\beta \Lambda_{P}^{G} \lambda J L=J-S^{\prime}, S^{\prime} s_{3} s_{4}, \eta_{3} \eta_{4}: \eta_{3} \eta_{4}(-1)^{J-S^{\prime}}=P ; m k l\right|
$$

Comments:

- Different ' M ' parameters are not independent. If we try to relate the states between continuous and cubic symmetries:
$\left|\Lambda_{p} \lambda J n \xi\right\rangle=\sum_{m_{J}} c_{J m_{J}}^{\Lambda_{p} \lambda n}\left|J^{P} m_{J} \xi\right\rangle$ we see that, in fact, $M_{i}=\sum c_{i} c_{i}^{*} m$. This will reduce the number of independent mass parameters.
- But, for example, we can construct three single particle states in $A_{1 u}^{-}$channel: $J=0 \rightarrow 2$ states, $J=4 \rightarrow 1$ state; all have independent M
- So no ' g ' term between different J, but E, T_{1} and T_{2} occur in $J=4$ irreps
- if we construct states that don't retain J ? \rightarrow more non-zero g 's than before (??)

Working with a weird basis

- for $1 \rightarrow 2$ interaction: we have $|\sigma \Lambda \lambda\rangle g_{\Lambda \lambda}^{S M_{S}}(\vec{k})\left\langle\alpha S M_{S} \vec{k}\right|$ where
$g_{\Lambda \lambda}^{S M_{S}}(\vec{k})=\sum d_{J M_{J}}^{\Lambda \lambda} g_{S M_{S}}^{J M_{J}}(\vec{k})=\sum d_{J M_{J}}^{\Lambda \lambda} \sum c_{L M_{L} S M_{S}}^{J M_{J}} g^{L M_{L}}(\vec{k})$
- The term $g^{L M_{L}}(\vec{k})$ transforms like spherical harmonics:

$$
g^{L M_{L}}(\vec{k})=Y^{L M_{L}}(\vec{k}) u(|\vec{k}|)
$$

- Matches with the form of the g-term mentioned before
- We can also work it out for non-zero total constituent momenta

Summary

- comprehensive survey of energy spectrum of QCD stationary states in a finite volume
- Effective Hamiltonian method to extract resonance information from the finite volume spectra

Tetraquark Color Structure

$$
\begin{aligned}
\bar{\Phi}_{\alpha \beta \gamma \delta}^{(6) A B C D}(\boldsymbol{p}, t)=\sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot \boldsymbol{x}} & {\left[\bar{q}_{a \alpha}^{A}(\boldsymbol{x}, t) \bar{q}_{b \beta}^{B}(\boldsymbol{x}, t) C_{a b}^{l *}\right] } \\
\left(\overline{6}_{S} \otimes 6_{S}\right) & \times\left[D_{l m}^{(6)} C_{c d}^{m} q_{c \gamma}^{C} q_{d \delta}^{D}\right](\boldsymbol{x}, t)
\end{aligned}
$$

$$
\left.\left.\left.\begin{array}{rl}
\bar{\Phi}_{\alpha \beta \gamma \delta}^{(8) A B C D}(\boldsymbol{p}, t)= & \sum_{\boldsymbol{x}} e^{i \boldsymbol{p} \cdot \boldsymbol{x}}
\end{array}\right] \bar{q}_{a \alpha}^{A}(\boldsymbol{x}, t) q_{b \beta}^{B}(\boldsymbol{x}, t) \lambda_{a b}^{i}\right]\right] \text { } \begin{aligned}
(8 \otimes 8) & {\left[D_{i j}^{(8)} \lambda_{c d}^{j} \bar{q}_{c \gamma}^{C} q_{d \delta}^{D}\right](\boldsymbol{x}, t) }
\end{aligned}
$$

Transformation of Diquarks

- the quark fields transform in the 3-dimensional irrep

$$
q_{a} \rightarrow V_{a b}^{(3)} q_{b}, \quad \quad \bar{q}_{a} \rightarrow \bar{q}_{b} V_{b a}^{(3) \dagger}
$$

- need the diquarks to transform properly.
- e.g. the 6-dimensional irrep

$$
\begin{aligned}
C_{c d}^{m} q_{c} q_{d} & \rightarrow C_{c d}^{m} V_{c c^{\prime}}^{(3)} q_{c^{\prime}} V_{d d^{\prime}}^{(3)} q_{d^{\prime}} \\
& =V_{m n}^{(6)} C_{c^{\prime} d^{\prime}}^{n} q_{c^{\prime}} q_{d^{\prime}}
\end{aligned}
$$

- this implies the following transformation of $C_{c d}^{m}$

$$
C_{c d}^{m} V_{c c^{\prime}}^{(3)} V_{d d^{\prime}}^{(3)}=V_{m n}^{(6)} C_{c^{\prime} d^{\prime}}^{n}
$$

- similar for other irreps

Diquark Displacements

- we also need the gauge link variables in the 6 and 8 irreps in order to displace the diquarks
- consider the following definition for $D_{i j}^{(8)}(x, y)$

$$
D_{i j}^{(8)}(x, y) \equiv \lambda_{i}^{a b} D_{b c}^{(3)}(x, y) \lambda_{j}^{c d} D_{d a}^{(3)}(x, y)
$$

- then, one can show it transforms as

$$
D_{i j}^{(8)}(x, y) \rightarrow \Omega_{i i^{\prime}}^{(8)}(x) D_{i^{\prime} j^{\prime}}^{(8)}(x, y) \Omega_{j^{\prime} j}^{(8) \dagger}(y)
$$

by using

$$
\Omega_{i k}^{(8)} \lambda_{k}^{a b}=\Omega_{a a^{\prime}}^{(3) \dagger} \lambda_{i}^{a^{\prime} b^{\prime}{ }^{\prime}} \Omega_{b^{\prime} b}^{(3)}
$$

- similar for the 6 irrep

Tetraquark Correlators

- Must project the tetraquark operators onto the irreps of the lattice symmetry group

$$
\bar{T}_{l}(t)=c_{\alpha \beta \gamma \delta}^{(l) *} \bar{\Phi}_{\alpha \beta \gamma \delta}^{A B C D}(t)
$$

- recall how stochastic LapH estimates quark lines

$$
\mathcal{Q}_{a \alpha ; b \beta}^{(A)}\left(x, t ; x_{0}, t_{0} \mid U\right) \approx \frac{1}{N_{r}} \sum_{r=1}^{N_{r}} \sum_{A_{d}} \varphi_{a \alpha}^{(A, r)\left[A_{d}\right]}(x, t \mid U) \varrho_{b \beta}^{(A, r)\left[A_{d}\right]}\left(x_{0}, t_{0} \mid U\right)^{*}
$$

- next define a tetraquark function as

$$
\begin{aligned}
\mathcal{T}_{l,(3)}^{\left[b_{1} b_{2} b_{3} b_{4}\right]}\left(\varrho_{1}, \varrho_{2}, \varphi_{3}, \varphi_{4} ; t\right)=c_{\alpha \beta \gamma \delta}^{(l)} & \sum_{\boldsymbol{x}} e^{-i \boldsymbol{p} \cdot \boldsymbol{x}} \varrho_{a \alpha \boldsymbol{x} t}^{\left[b_{1}\right]}\left(\rho_{1}\right)^{*} \varrho_{b \boldsymbol{\beta} \boldsymbol{x} t}^{\left[b_{2}\right]}\left(\rho_{2}\right)^{*} \\
& \times \varepsilon_{a b e} \varepsilon_{c d e} \varphi_{c \gamma \boldsymbol{x} t}^{\left[b_{3}\right]}\left(\rho_{3}\right) \varphi^{d \delta \boldsymbol{x} t}\left(\rho_{4}\right)
\end{aligned}
$$

- correlator is sum over products of these tetraquark functions

Excited States from Correlation Matrices

- in finite volume, energies are discrete

$$
C_{i j}(t)=\sum_{n}^{\infty} Z_{i}^{(n)} Z_{j}^{(n) *} e^{-E_{n} t}, \quad Z_{j}^{(n)}=\langle 0| O_{j}|n\rangle
$$

- not practical to do fits using above form
- define new correlation matrix $G(t)$

$$
G(t)=C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2}
$$

- let columns of $V(t)$ be the eigenvectors and $\lambda_{n}(t)$ be the eigenvalues of $G(t)$
- for large $t, \lambda_{n}(t) \rightarrow\left|Z_{n}^{\prime}\right|^{2} e^{-E_{n} t}$ and

$$
Z_{j}^{(n)} \approx C_{j k}\left(\tau_{0}\right)^{1 / 2} V_{k n}(t) Z_{n}^{\prime}
$$

- does not assume $C_{i j}(t)$ is approximated by first N terms

Correlator matrix toy model

- Example: $N_{e}=200$ eigenstates with energies

$$
E_{0}=0.20, \quad E_{n}=E_{n-1}+\frac{0.08}{\sqrt{n}}, \quad n=1,2, \ldots, N_{e}-1 .
$$

for $N \times N$ correlator matrix, $N=12$, overlaps

$$
Z_{j}^{(n)}=\frac{(-1)^{j+n}}{1+0.05(j-n)^{2}} .
$$

- recall definition of effective energies

$$
m_{\alpha}^{\mathrm{eff}}(t)=\frac{1}{\Delta t} \ln \left(\frac{C_{\alpha \alpha}(t)}{C_{\alpha \alpha}(t+\Delta t)}\right)
$$

Correlator matrix toy model (con't)

- toy model $N_{e}=200$ with 12×12 correlator matrix $C(t)$

- left: effective energies of diagonal elements of correlator matrix
- middle: effective energies of eigenvalues of $C(t)$
- right: effective energies of eigenvalues of $C\left(\tau_{0}\right)^{-1 / 2} C(t) C\left(\tau_{0}\right)^{-1 / 2}$ for $\tau_{0}=1$

Scattering Phase Shifts from Finite-volume Energies

- correlator of two-particle operator σ in finite volume

- $C^{\infty}(P)$ has branch cuts where two-particle thresholds begin
- momentum quantization in finite volume: cuts \rightarrow series of poles
- C^{L} poles: two-particle energy spectrum of finite volume theory

Phase Shift from Finite-volume Energies (con't)

- finite-volume momentum sum is infinite-volume integral plus correction \mathcal{F}

- define the following quantities: A, A^{\prime}, invariant scattering amplitude $i \mathcal{M}$

$$
\begin{aligned}
& + \text { (iK) (iK) + ... } \\
& (i M)=-i K+i K \\
& +i K
\end{aligned}
$$

Phase Shifts from Finite-volume Energies (con't)

- subtracted correlator $C_{\text {sub }}(P)=C^{L}(P)-C^{\infty}(P)$ given by

- sum geometric series

$$
C_{\mathrm{sub}}(P)=A \mathcal{F}(1-i \mathcal{M} \mathcal{F})^{-1} A^{\prime}
$$

- poles of $C_{\text {sub }}(P)$ are poles of $C^{L}(P)$ from $\operatorname{det}(1-i \mathcal{M F})=0$

Phase Shifts from Finite-volume Energies (con't)

- work in spatial L^{3} volume with periodic b.c.
- total momentum $\boldsymbol{P}=(2 \pi / L) \boldsymbol{d}$, where \boldsymbol{d} vector of integers
- masses m_{1} and m_{2} of particle 1 and 2
- calculate lab-frame energy E of two-particle interacting state in lattice QCD
- boost to center-of-mass frame by defining:

$$
\begin{aligned}
E_{\mathrm{cm}} & =\sqrt{E^{2}-\boldsymbol{P}^{2}}, \quad \gamma=\frac{E}{E_{\mathrm{cm}}}, \\
\boldsymbol{q}_{\mathrm{cm}}^{2} & =\frac{1}{4} E_{\mathrm{cm}}^{2}-\frac{1}{2}\left(m_{1}^{2}+m_{2}^{2}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{4 E_{\mathrm{cm}}^{2}}, \\
u^{2} & =\frac{L^{2} \boldsymbol{q}_{\mathrm{cm}}^{2}}{(2 \pi)^{2}}, \quad s=\left(1+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)}{E_{\mathrm{cm}}^{2}}\right) \boldsymbol{d}
\end{aligned}
$$

- E related to S matrix (and phase shifts) by

$$
\operatorname{det}\left[1+F^{(\boldsymbol{s}, \gamma, u)}(S-1)\right]=0 .
$$

Phase shifts from finite-volume energies (con't)

- F matrix in $J L S$ basis states given by

$$
\begin{aligned}
& F_{J^{\prime} m_{J^{\prime}} L^{\prime} S^{\prime} a^{\prime} ; J m_{J} L S a}^{(s, \gamma, u)}=\frac{\rho_{a}}{2} \delta_{a^{\prime} a} \delta_{S^{\prime} S}\left\{\delta_{J^{\prime} J} \delta_{m_{J^{\prime}} m_{J}} \delta_{L^{\prime} L}\right. \\
& \left.+W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(\boldsymbol{s}, \gamma, u)}\left\langle J^{\prime} m_{J^{\prime}} \mid L^{\prime} m_{L^{\prime}}, S m_{S}\right\rangle\left\langle L m_{L}, S m_{S} \mid J m_{J}\right\rangle\right\}
\end{aligned}
$$

- total angular mom J, J^{\prime}, orbital mom L, L^{\prime}, intrinsic spin S, S^{\prime}
- a, a^{\prime} channel labels
- $\rho_{a}=1$ distinguishable particles, $\rho_{a}=\frac{1}{2}$ identical

$$
W_{L^{\prime} m_{L^{\prime}} ; L m_{L}}^{(s, \gamma, u)}=\frac{2 i}{\pi \gamma u^{l+1}} \mathcal{Z}_{l m}\left(s, \gamma, u^{2}\right) \int d^{2} \Omega Y_{L^{\prime} m_{L^{\prime}}}^{*}(\Omega) Y_{l m}^{*}(\Omega) Y_{L m_{L}}(\Omega)
$$

- Rummukainen-Gottlieb-Lüscher (RGL) shifted zeta functions $\mathcal{Z}_{l m}$
- $F^{(s, \gamma, u)}$ diagonal in channel space, mixes different J, J^{\prime}
- recall S diagonal in angular momentum, but off-diagonal in channel space

P-wave $I=1 \pi \pi$ scattering

- for P-wave phase shift $\delta_{1}\left(E_{\mathrm{cm}}\right)$ for $\pi \pi I=1$ scattering
- define

$$
w_{l m}=\frac{\mathcal{Z}_{l m}\left(s, \gamma, u^{2}\right)}{\gamma \pi^{3 / 2} u^{l+1}}
$$

d	Λ	$\cot \delta_{1}$
$(0,0,0)$	$T_{1 u}^{+}$	$\operatorname{Re} w_{0,0}$
$(0,0,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+\frac{2}{\sqrt{5}} \operatorname{Re} w_{2,0}$
	E^{+}	$\operatorname{Re} w_{0,0}-\frac{1}{\sqrt{5}} \operatorname{Re} w_{2,0}$
$(0,1,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+\frac{1}{2 \sqrt{5}} \operatorname{Re} w_{2,0}-\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,1}-\sqrt{\frac{3}{10}} \operatorname{Re} w_{2,2}$,
	B_{1}^{+}	$\operatorname{Re} w_{0,0}-\frac{1}{\sqrt{5}} \operatorname{Re} w_{2,0}+\sqrt{\frac{6}{5}} \operatorname{Re} w_{2,2}$,
	B_{2}^{+}	$\operatorname{Re} w_{0,0}+\frac{1}{2 \sqrt{5}} \operatorname{Re} w_{2,0}+\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,1}-\sqrt{\frac{3}{10}} \operatorname{Re} w_{2,2}$
$(1,1,1)$	A_{1}^{+}	$\operatorname{Re} w_{0,0}+2 \sqrt{\frac{6}{5}} \operatorname{Im} w_{2,2}$
	E^{+}	$\operatorname{Re} w_{0,0}-\sqrt{\frac{6}{5}} \operatorname{Im} w_{2,2}$

$I=1 \pi \pi$ scattering phase shift and width of the ρ

- preliminary results $32^{3} \times 256, m_{\pi} \approx 240 \mathrm{MeV}$ (J. Bulava et al.):

$$
g_{\rho \pi \pi}=5.99(26), m_{\rho} / m_{\pi}=3.350(24), \chi^{2} / \text { dof }=1.04
$$

- fit $g_{\rho \pi \pi}^{2} q_{\mathrm{cm}}^{3} \cot \left(\delta_{1}\right)=6 \pi E_{\mathrm{cm}}\left(m_{\rho}^{2}-E_{\mathrm{cm}}^{2}\right)$

Effective Hamiltonian method

- relating finite-volume energies to resonance parameters via "Lüscher method" very complicated
- alternative: use an effective hadron Hamiltonian matrix
- Wu et al, PRC 90, 055206 (2014)
- use single and two-particle states as basis states
- interaction terms from symmetry, with assumed form with respect to momenta
- parameters of Hamiltonian determined from fits to finite-volume spectra
- Lippmann-Schwinger (or other methods) to extract infinite-volume resonances

Hamiltonian in total zero momentum sector

- non-interacting part

$$
H_{0}=\sum_{i=1, n}\left|\sigma_{i}\right\rangle m_{i}^{0}\left\langle\sigma_{i}\right|+\sum_{\alpha} \int d \vec{k}|\alpha(\vec{k})\rangle\left[\sqrt{m_{\alpha_{1}}^{2}+\vec{k}_{\alpha_{1}}^{2}}+\sqrt{m_{\alpha_{2}}^{2}+\vec{k}_{\alpha_{2}}^{2}}\right]\langle\alpha(\vec{k})|
$$

- interaction term

$$
H_{I}=g+v
$$

- 2-1 interaction

$$
g=\sum_{\alpha} \int d \vec{k} \sum_{i=1, n}\left\{|\alpha(\vec{k})\rangle g_{i, \alpha}^{\dagger}(k)\langle i|+|i\rangle g_{i, \alpha}(k)\langle\alpha(\vec{k})|\right\}
$$

- 2-2 interaction

$$
v=\sum_{\alpha, \beta} \int d \vec{k} d \vec{k}^{\prime}|\alpha(\vec{k})\rangle v_{\alpha, \beta}\left(k, k^{\prime}\right)\left\langle\beta\left(\vec{k}^{\prime}\right)\right|
$$

- the S matrix is given by

$$
S_{\alpha, \beta}(E)=1+2 i T_{\alpha, \beta}\left(k_{0 \alpha}, k_{0 \beta} ; E\right)
$$

Reference

圊 C．Morningstar et al．，Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD， Phys．Rev．D 83， 114505 （2011）．

围 C．Morningstar et al．，Extended hadron and two－hadron operators of definite momentum for spectrum calculations in lattice QCD， Phys．Rev．D 88， 014511 （2013）．
呞 S．Basak et al．，Group－theoretical construction of extended baryon operators in lattice QCD，Phys．Rev．D 72， 094506 （2005）．
囯 S．Basak et al．，Lattice QCD determination of patterns of excited baryon states，Phys．Rev．D 76， 074504 （2007）．
國 Wu et al．，Finite－volume Hamiltonian method for coupled－channels interactions in lattice QCD，Phys．Rev．C 90， 055206 （2014）

