Measurements of Proton EM Form Factors in TL Region at BESIII

Samer Ahmed, Alaa Dbeyssi, Paul Larin, <u>Dexu Lin</u>, Frank Maas, Cristina Morales, Christoph Rosner and Yadi Wang

Helmholtz-Institut Mainz, 55128 Mainz, Germany
 Institut f
ür Kernphysik, JGU Mainz, 55128 Mainz, Germay
 PRISMA Cluster of Excellence, JGU Mainz, 55128 Mainz, Germay

HUGS 2016

D.X. Lin (HIM)

Measurements of Proton EM Form Facto

Outline

1 Introduction and Motivation

- Introduction of BESIII
- Proton Form Factors

2 Measurements of the Proton FFs with ISR Method

- $p\overline{p}\gamma$ Event Selection
- Background Evaluation

3 Proton Form Factors form Energy Scan

EL SQA

e

e⁻

LINA

BEPCII and BESIII

BESIII

D.X. Lin (HIM)

FOR

Measurements of Proton EM Form Facto

Double Storage Rings of BEPCII: A τ -charm factory

・ロト ・ 同ト ・ ヨト ・ ヨト

Beam energy: Optimum energy: Crossing Angle: 1.0 - 2.3 GeV 1.89 GeV ±11 mrad

Beam current: Designed Lumi: Achieved time:

0.91 A 1×10³³ cm⁻²s⁻¹ 5th April, 2016

The **BESIII** Collaboration

By Prof. W. Gradl

고 노

The Proton Electromagnetic Form Factors

- Internal structure and dynamics of the lightest baryon,
- The Form Factors in Space-Like(SL) region or Time-Like(TL) region, $\Gamma^{\mu} = F_1(q^2)\gamma^{\mu} + \frac{i\kappa}{2m_p}F_2(q^2)\sigma^{\mu\nu}q_{\nu}$
- The differential cross section for one photon exchange,

Data on Proton Time-Like Form Factor Ratio

 \Rightarrow Only extraction of the ratio $\frac{|G_E|}{|G_M|}$,

 \Rightarrow **Inconsistency** between BaBar and PS170,

 \Rightarrow Maximum at 2 GeV/c²,

⇒ Extraction of an effective FF based on assumptions,

 \Rightarrow 10%–24% statistics uncertainties.

PRD 87, 092005 (2013) Nucl. Phys. B 411, 3 (1994) PRD 91, 112004 (2015)

D.X. Lin (HIM)

Measurements of Proton EM Form Facto

EL SQA

Data on Proton Time-Like Form Factor Ratio

How to Measure the Form Factors at BESIII

	Energy Scan	Initial State Radiation		
E _{beam}	discrete fixed			
L	low at each beam energy high at one beam ene			
σ	$\frac{d\sigma_{p\bar{p}}}{d(\cos\theta)} = \frac{\pi\alpha^2\beta C}{2q^2} [G_M ^2 (1+\cos^2\theta)]$	$rac{d^2\sigma_{p\overline{p}\gamma}}{dq^2d heta_\gamma}=rac{1}{s}W(s,x, heta_\gamma)\sigma_{p\overline{p}}(q^2)$		
	$+\frac{4m_{\rho}^2}{q^2} G_E ^2\sin^2\theta]$	$W(s, x, heta_{\gamma}) = rac{lpha}{\pi x} (rac{2-2x+x^2}{\sin^2 heta_{\gamma}} - rac{x^2}{2})$		
q^2	single at each beam energy	from threshold to <i>s</i>		
Both techniques, energy scan and initial state $\sim \frac{1}{400}$				
radiation, can be used at BESIII				

D.X. Lin (HIM)

Measurements of Proton EM Form Facto

The Status of BESIII Data

Data samples for ISR method and energy scan.

Data Sample	\mathcal{L}_{int}	Energy Range (GeV)	Notes		
J/Ψ	${\sim}0.45~{ m fb}^{-1}$	3.097	Large background contamination from resonance.		
Ψ'	${\sim}0.8~{ m fb}^{-1}$	3.686	Difficult to analyze		
Ψ''	2.9 fb ⁻¹	3.773	n FFs		
$\Psi(4040)$	$0.5 \ {\rm fb}^{-1}$	4.009	(tagged+untagged)		
Y(4260)	$1.9 {\rm ~fb^{-1}}$	4.23 and 4.26	and n FFs		
Y(4360)	$0.5 { m fb}^{-1}$	4.36	(tagged) with ISR		
Y(4420)	$1.0 {\rm ~fb^{-1}}$	4.42	HIM		
Y(4600)	$0.5 \ {\rm fb}^{-1}$	4.60			
	${\sim}12~{ m pb}^{-1}$	2.23, 2.4, (3.05, 3.08)	p+Λ FFs, USTC, Uppsala		
Energy Scan	$0.8 { m ~fb^{-1}}$	3.85 - 4.60	R Scan		
	525.5 pb ⁻¹	2 00 - 3 08	Bayrons FFs, HIM,		
		2.00 - 3.00	USTC and Uppsala		

Total luminosity above Ψ'' : 7.408 fb⁻¹.

The Analysis for Proton FFs with ISR Method at BESIII

- Data samples: 3.773, 4.009, 4.23, 4.26, 4.36, 4.42 and 4.60 GeV,
- Total luminosity: 7.408 fb⁻¹,
- Two analyses performed: ISR-Tagged and ISR-Untagged,
 - ISR-Tagged: ISR photon detected in calorimeter,
 - ISR-Untagged: ISR photon escaped from the beam pipe,
- ISR-Tagged Analysis: Event selection
 - Two charged tracks with oposite charge identified as proton,
 - one high energy neutral shower in calorimeter,
 - 4-C kinematic fitting,
 - $p\overline{p}\pi^0$ event veto.
- Backgrounds Studies:
 - Inclusive $(q\overline{q})$ MC events,
 - **Exclusive** background: $p\overline{p}\pi^0$ events.

EL SOCO

A B M A B M

ISR Photon Angular Distribution from MC Simulation γ_{ISR} Angular Distribution

13 / 22

$p\overline{p}$ Invariant Mass Spectrum from 4230 MC Simulation

Dominant Background Evaluation for ISR Ananlysis

- Inclusive (q \overline{q}) MC samples: $p\overline{p}\gamma_{ISR}$ and $p\overline{p}\pi^0$ survived.
- Exclusive (dominant) background $e^+e^-{\rightarrow}p\overline{p}\pi^0$
 - MC samples: $1{\times}10^7$ events generated (PHSP, BesEvtgen with ConExc model) for each energy point,
 - Apply $p\overline{p}\gamma$ alogrithm on MC sample,
 - Select $p\overline{p}\pi^0$ from **data** and **MC sample**
- Final $p\overline{p}\pi^0$ background pollution calculation.

$$H_{bkg} = H_{\pi^0}^{dat} \times \frac{H_{isr}^{MC}}{H_{\pi^0}^{MC}}$$

• Dominant background subtraction

D.X. Lin (HIM)

(ロ) 4月) 4日) 4日) 5日 うろう

Extraction of the Proton FFs (Ratio) and the Cross Section

- Fit the angular distribution of the proton to extract the ratio of the proton FFs with 6 q²-bins from the threshold of pp to 3.0 GeV,
- Calculate the cross sections and the effective FF of the proton with 31 q^2 -bins at the same invariant mass range,
- Perform the systematic uncertainties study for both of the ratio and the cross sections.
- The results are comparable with the previous experiments.

Energy Scan

The First Results of Proton FFs from R-Scan at BESIII

- R-Scan data in 2012, limited lunimosity.
- The First results of $e^+e^- \rightarrow p\overline{p}$ from R-Scan (PRD 91, 112004(2015)).
- To extract the Ratio (R_{em}) at 2.23, 2.4 and (3.05, 3.08) GeV.

Energy Scan from 2.0 - 3.08 GeV at BESIII (Proposal)

	Time-Like	Space-Like				
M _{pp}	$\mathcal{L} (pb^{-1})$	$\frac{\delta G_E}{G_F}$	$\frac{\delta G_M}{G_M}$	$\frac{\delta R_{em}}{R_{em}}$	$\sqrt{-q^2}$	$\frac{\delta R_{em}}{R_{em}}$
2.00	8.95	9.0%	3.0%	9.2%	1.99	10.8%
2.10	10.8	10.0%	3.0%	10.0%		
2.20	13.0	11.0%	3.0%	9.5%	2.18	13.9%
2.3084	20.0	10.0%	3.0%	9.7%	2.27	14.9%
2.3950	35.0	9.0%	3.0%	8.8%	2.35	31.9%
2.644	65.0	16.0%	5.0%	14.6%	2.59	32.1%
2.9	100.0	25.0%	6.0%	24.0%	2.91	129.7%
3.08	150.0	35.0%	8.5%	35.0%		

- Proposal studies with Babayaga (modification) Simulation,
- The relative error for the last point, 3.08 GeV, is estimated based on the simulation of 2.9 GeV,
- To combine the last three energy points, 19% accuracy for R_{em} and G_E , and 6% accuracy for G_M would be achieved.
- NEW: accuracy in time-like region similar as for space-like.

Energy Scan

Expected Accuracy of the Ratio $\binom{|G_E|}{|G_M|}$ from Energy Scan

The Status of Energy Scan

Energy range:	2.0 - 3.08 GeV
Data points:	21
Online Lumi.:	$525 \ \mathrm{pb}^{-1}$

Green points are MC Simulation for energy scan proposal study.

D.X. Lin (HIM)

Conclusions and Outlook

- Two methods to measure proton EM FFs at BESIII.
- ISR analyses (tagged and untagged) above 3.773 GeV are in review, and the results are expected very soon.
- The expected accuracy of R_{em} will be comparable with BaBar from ISR analysis.
- The first results of proton FFs from R-Scan was published in 2015.
- The Energy Scan (2.0 3.08 GeV) data was collected in 2015.
- Data analysis for proton FFs with Energy Scan is ongoing.
- It will be the first time to measure the R_{em} , $|G_E|$ and $|G_M|$ in a wide energy range in very **narrow** q²-bins.
- An accuracy between 9% 15% can be achieved for the ratio (R_{em}) with Energy Scan data.

3 × 4 3 × 3 1 0 0 0

Thank You for Your Attention!

Measurements of Proton EM Form Facto

ELE DOG

글 돈 옷 글 돈.

Backup

D.X. Lin (HIM)

Measurements of Proton EM Form Facto

22 / 22