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● Neutrino oscillation experiments search a distortion in the
neutrino flux at a detector positioned far away (L) from the
source.
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● Neutrino oscillation experiments search a distortion in the
neutrino flux at a detector positioned far away (L) from the
source.

● By comparing near and far neutrino energy spectra, one
gains information about the oscillation probability

P (νi → νj) = sin22θijsin
2
∆m2

i,jL

2Eν
,

and then about the θij mixing angles and ∆m2
i,j mass

squared differences.
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● Neutrino oscillation experiments search a distortion in the
neutrino flux at a detector positioned far away (L) from the
source.

● By comparing near and far neutrino energy spectra, one
gains information about the oscillation probability

P (νi → νj) = sin22θijsin
2
∆m2

i,jL

2Eν
,

and then about the θij mixing angles and ∆m2
i,j mass

squared differences.

● New high quality data are becoming from MiniBoone,
MINOS, NOMAD, Minerνa and SciBoone full dedicated
to measure cross sections.
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CCQE reaction νln→ l−p in the nucleus target is used as
signal event or/and to reconstruct the neutrino energy.



Problems

❖ Motivation

❖ Problems

❖

❖ 1π process

❖ Elementary
amplitude

❖

❖ Requirements on
the hadronic
amplitud

❖

❖

❖

❖

❖ Fixing amplitude
parameters(∆)

❖

❖

❖

❖

❖

❖ Binding + GSC

❖

❖

❖ FSI
❖ Results for CC
and NC

❖

Conclusions

3 / 26

CCQE reaction νln→ l−p in the nucleus target is used as
signal event or/and to reconstruct the neutrino energy.

Neutrino energy, is not directly measurable but reconstructed
from reactions products through two-body kinematics (exact
only for free nucleons),and competition of another processes
could lead misidentification of the arriving neutrinos.
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CCQE reaction νln→ l−p in the nucleus target is used as
signal event or/and to reconstruct the neutrino energy.

Neutrino energy, is not directly measurable but reconstructed
from reactions products through two-body kinematics (exact
only for free nucleons),and competition of another processes
could lead misidentification of the arriving neutrinos.

● Nuclear effects: Smearing of the reconstructed energy by
the momentum distribution of the target bound nucleons
(GSC+Bounding). FSI of the emerging nucleon generate
energy lost,change of direction,charge transfer or multiple
nucleon knock out(np-nh). All these affecting QE events
determination.
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● MEC processes lead to additional contributions to
one-body current generated.

● Disappearance searching experiments νµ → νx uses
νµn→ µ−p CCQE reaction to detect an arriving neutrino
and reconstruct its energy. Eν determination could be
wrong for a fraction of CC1π+ background events (20%)
νµp→ µ−pπ+, that can mimic a CCQE one if the pion is
absorbed in the target and/or not detected.
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● MEC processes lead to additional contributions to
one-body current generated.

● Disappearance searching experiments νµ → νx uses
νµn→ µ−p CCQE reaction to detect an arriving neutrino
and reconstruct its energy. Eν determination could be
wrong for a fraction of CC1π+ background events (20%)
νµp→ µ−pπ+, that can mimic a CCQE one if the pion is
absorbed in the target and/or not detected.

● In νµ → νe appearance experiment, one detects νe in an
(almost) νµ beam. Signal event νen→ e−p is dominated
by a NC1π0 νµN → νµNπ

0 background, and the detector
can not distinguish between e− and π0 if one of both
photons from the π0 → γγ decay escapes.
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A precise knowledge of cross sections is a prerequisite in
order to make simulations in event generators to substract
fake 1π events in QE countings.
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A precise knowledge of cross sections is a prerequisite in
order to make simulations in event generators to substract
fake 1π events in QE countings.

We must to analyze:

● Elementary amplitude.

● Bounding+GSC effects.

● FSI on the N and π.
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For the νN → lN ′π process



Elementary amplitude

❖ Motivation

❖ Problems

❖

❖ 1π process

❖ Elementary
amplitude

❖

❖ Requirements on
the hadronic
amplitud

❖

❖

❖

❖

❖ Fixing amplitude
parameters(∆)

❖

❖

❖

❖

❖

❖ Binding + GSC

❖

❖

❖ FSI
❖ Results for CC
and NC

❖

Conclusions

6 / 26

For the νN → lN ′π process

σ(EνCM) =
FCC/NC

(2π)4ECM
ν

√
s

∫ E+

l

El−
dECM

l

∫ E+
π

E−

π

dECM

π

∫ +1

−1
dcosθ

∫ 2π

0
dη

1

16

∑

spin

|M|2 , (1)

where where ECM
ν = mNELab

ν√
2ELab

ν mN+m2
N

and
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For the νN → lN ′π process

σ(EνCM) =
FCC/NC

(2π)4ECM
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π
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π
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π
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dcosθ

∫ 2π

0
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16

∑

spin

|M|2 , (1)

where where ECM
ν = mNELab

ν√
2ELab

ν mN+m2
N

and

M = MB +
∑

R

MR, R ≡ ∆, N∗. (2)
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Mi = −GF√
2
ū(p′l)(−i)γλ(1− γ5)u(pν)ū(p

′)(Oλ
V i −Oλ

Ai)u(p),

i = B,R (3)
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● It should be Unitary. With real backgrounds this is

violated. It is possible a unitarization by introduction of
experimental phase shifts and rescattering of the final πN
pair, but effect not so important as in photoproduction.
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Mi = −GF√
2
ū(p′l)(−i)γλ(1− γ5)u(pν)ū(p

′)(Oλ
V i −Oλ

Ai)u(p),

i = B,R (3)
● It should be Unitary. With real backgrounds this is

violated. It is possible a unitarization by introduction of
experimental phase shifts and rescattering of the final πN
pair, but effect not so important as in photoproduction.

● Vector amplitude should fulfill electromagnetic gauge
invariance(GI) → ūOλ

V iqλu = 0,

✦ In MV (NP,NC,πF,πC) same vector FF,
✦ Mρ is axial and Mω is self-GI,
✦ MV R are built self-GI, but for other reactions involving

R must be GI still with finite width effects.
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● MR(S = 3/2) should be invariant on contact
transformations (CT)

ψ′µ = R(A)µνψν ≡ (gµν − 1/2(1 + 3A)γµγν)ψν . (4)
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● MR(S = 3/2) should be invariant on contact
transformations (CT)

ψ′µ = R(A)µνψν ≡ (gµν − 1/2(1 + 3A)γµγν)ψν . (4)

Not a symmetry but a field redefinition of ψµ ≡ ψ ⊗Wµ, ψ
Dirac (S=1/2), Wµ a 4-vector (S=0,1 rest or helicity frame)
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Not a symmetry but a field redefinition of ψµ ≡ ψ ⊗Wµ, ψ
Dirac (S=1/2), Wµ a 4-vector (S=0,1 rest or helicity frame)

CT only affects ψ1/2µ components and let Lfree(ψ
µ)

invariant ⇒ a whole family Lfree(A).
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● MR(S = 3/2) should be invariant on contact
transformations (CT)

ψ′µ = R(A)µνψν ≡ (gµν − 1/2(1 + 3A)γµγν)ψν . (4)

Not a symmetry but a field redefinition of ψµ ≡ ψ ⊗Wµ, ψ
Dirac (S=1/2), Wµ a 4-vector (S=0,1 rest or helicity frame)

CT only affects ψ1/2µ components and let Lfree(ψ
µ)

invariant ⇒ a whole family Lfree(A).

LN(W,π)R(A) such that total amplitudes independent on A.
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Feynman Rules

Gαβ(p, A) =
/p +m

p2 −m2

{

−gαβ +
1

3
γαγβ +

2

3m2
pαpβ −

1

3m
(pαγβ − pβγα)

−

b(/p−m)

3m2

[

γαpβ − (b− 1)γβpα + (
b

2
/p + (b− 1)m)γαγβ

]}

.

where b = (A+ 1)/(2A+ 1).

-1

A=-1/3 ,

A=-1,
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]}

.

where b = (A+ 1)/(2A+ 1).− K −

G

(
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3

)
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= −

[

6p+m

p2 −m2
P̂ 3/2
µν +

2

m2
( 6p+m)(P̂

1/2
11 )µν +

√
3

m
(P̂

1/2
12 + P̂

1/2
21 )µν

]

.

-1

3 22 3

−

A=-1/3 ,
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.
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3
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= −
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2
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( 6p+m)(P̂

1/2
11 )µν +

√
3

m
(P̂

1/2
12 + P̂

1/2
21 )µν

]

.
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3 22 3

−

conventional (C) and spin 3/2-gauge (G) πN couplings
We now focus on the dominant contribution (first graph in figure

the amplitude calculated using the V σ

πN1C
= −

fπN1

mπ

pσ

πA=-1/3 ,

V σ
πN1G

= i
fπN1

mπ m
γ5γβ pα pπµǫαµβσ , coming fromA=-1,
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● Unstableness of R included in the Gµν(p) through
Σµν(p)(one loop-corrections), which accounts an energy
dependent width and vertex corrections to get GI.
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● Unstableness of R included in the Gµν(p) through
Σµν(p)(one loop-corrections), which accounts an energy
dependent width and vertex corrections to get GI.

We make Gdressed ≈ G(m∆ → m∆ − iΓ∆/2), referred as
complex mass scheme (CB, AM, GLC JPG(2012) in
press).
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● Electromagnetic and spin-3/2 GI should coexist. But,
making the minimal substitution pµ → pµ + iQkµ spin-3/2
GI is lost in VπNRG

.
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● Electromagnetic and spin-3/2 GI should coexist. But,
making the minimal substitution pµ → pµ + iQkµ spin-3/2
GI is lost in VπNRG

.

● C couplings work better than G as can be seen in π+p
elastic scattering, (AM, CB, DB JPG 39(2012)035005).
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● For the non-resonant background, we take g2πNN/4π = 14,
g2ρNN/4π = 2.9, κρ = 3.7, gωNN = 3gρNN and κω = −0.12
(vector dominance model), gσ/4π = 1.5, mσ = 650MeV ,
and masses from PDG.
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● For the non-resonant background, we take g2πNN/4π = 14,
g2ρNN/4π = 2.9, κρ = 3.7, gωNN = 3gρNN and κω = −0.12
(vector dominance model), gσ/4π = 1.5, mσ = 650MeV ,
and masses from PDG.

● Fitting to the elastic π+p→ π+p cross section data, leads
to f2∆Nπ/4π = 0.317± 0.003, m∆ = 1211.7± 0.4MeV and
Γ∆ = 92.2± 0.4MeV (GLC, AM NPA697,(2001)440).
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● For the non-resonant background, we take g2πNN/4π = 14,
g2ρNN/4π = 2.9, κρ = 3.7, gωNN = 3gρNN and κω = −0.12
(vector dominance model), gσ/4π = 1.5, mσ = 650MeV ,
and masses from PDG.

● Fitting to the elastic π+p→ π+p cross section data, leads
to f2∆Nπ/4π = 0.317± 0.003, m∆ = 1211.7± 0.4MeV and
Γ∆ = 92.2± 0.4MeV (GLC, AM NPA697,(2001)440).

● From data on of π+p→ π+pγ Bremmsstrahlung (GLC,
AM PDG(2002)) µ∆ = 2(1 + κ∆)

e
2m∆

= (6.14± 0.51) e
2mp

.
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● For the non-resonant background, we take g2πNN/4π = 14,
g2ρNN/4π = 2.9, κρ = 3.7, gωNN = 3gρNN and κω = −0.12
(vector dominance model), gσ/4π = 1.5, mσ = 650MeV ,
and masses from PDG.

● Fitting to the elastic π+p→ π+p cross section data, leads
to f2∆Nπ/4π = 0.317± 0.003, m∆ = 1211.7± 0.4MeV and
Γ∆ = 92.2± 0.4MeV (GLC, AM NPA697,(2001)440).

● From data on of π+p→ π+pγ Bremmsstrahlung (GLC,
AM PDG(2002)) µ∆ = 2(1 + κ∆)

e
2m∆

= (6.14± 0.51) e
2mp

.

● Fitting M3/2
1+ , E3/2

1+ ,from the γp→ π0p and γp→ π+n get
dressed values GM = 2.97± 0.08 and GE = 0.055± 0.010
(pion cloud effects), and bare G0

M = 1.69± 0.02 and
G0

E = 0.028± 0.008 ones (AM PLB647, (2007)253;
JPG34,(2997) 1627).
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● Weak sector the V coupling constants are fixed by CVC
for B and R amplitudes. For the A ones we exploit the
PCAC and the Goldberger-Treiman relations in B (gV = 1,
gωπV = gωπγ = 0.3247e, gA = 1.26 and

fρπA =
m2

ρ

93MeV gρNN
), and for the FF we adopt a dipole

model.



❖ Motivation

❖ Problems

❖

❖ 1π process

❖ Elementary
amplitude

❖

❖ Requirements on
the hadronic
amplitud

❖

❖

❖

❖

❖ Fixing amplitude
parameters(∆)

❖

❖

❖

❖

❖

❖ Binding + GSC

❖

❖

❖ FSI
❖ Results for CC
and NC

❖

Conclusions

16 / 26

● Weak sector the V coupling constants are fixed by CVC
for B and R amplitudes. For the A ones we exploit the
PCAC and the Goldberger-Treiman relations in B (gV = 1,
gωπV = gωπγ = 0.3247e, gA = 1.26 and

fρπA =
m2

ρ

93MeV gρNN
), and for the FF we adopt a dipole

model.

For the WN → ∆ CA
5 coupling we make a fit to the

differential cross section d<σ>
dQ2 for the νp→ µ−pπ+ (ANL),

getting CA
5 (0) = 1.35.
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● Weak sector the V coupling constants are fixed by CVC
for B and R amplitudes. For the A ones we exploit the
PCAC and the Goldberger-Treiman relations in B (gV = 1,
gωπV = gωπγ = 0.3247e, gA = 1.26 and

fρπA =
m2

ρ

93MeV gρNN
), and for the FF we adopt a dipole

model.

For the WN → ∆ CA
5 coupling we make a fit to the

differential cross section d<σ>
dQ2 for the νp→ µ−pπ+ (ANL),

getting CA
5 (0) = 1.35.

PCAC values lies ∼ 21% below, while QM value ( 1) is
∼ 37% smaller (also for Sato and Lee), but it is interesting
that G0

M (0)(QM) is also a ∼ 40% below the value of
GM (0) in the vector sector.
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● Binding within the RHA of QHD I (σ, ω mesons), for N and
∆ (universal coupling)
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● GSC (2p2h+4p4h) in ground state, through perturbation
theory in nuclear matter

nA(k) = 〈0̃|a†kmakm|0̃〉,
∫
d3k nA(k) =

A

4
(5)

|0̃〉 = N

|0〉+ 1

(2!)2

∑

p′s,h′s

cp1p2h1h2
|p1p2h1h2〉

+
1

(4!)2

∑

p′s,h′s

cp1p2p3p4h1h2h3h4
|p1p2p3p4h1h2h3h4〉


 ,

where

cp1p2h1h2
= −〈p1p2h1h2|V̂ |0〉

Ep1p2h1h2

, cp1p2p3p4h1h2h3h4
=

〈0|V̂ |p1p2h1h2〉〈p1p2h1h2|V̂ |p1p2p3p4h1h2h3h4〉
Ep1p2h1h2

Ep1p2p3p4h1h2h3h4

,
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nmt(p) =
3Nmt

4πp3F

[
θ(1− p) + δn(2)(p) + δn(4C)(p)

]
,

FIG. 2. Goldstone diagrams corresponding to the second-order



FSI

❖ Motivation

❖ Problems

❖

❖ 1π process

❖ Elementary
amplitude

❖

❖ Requirements on
the hadronic
amplitud

❖

❖

❖

❖

❖ Fixing amplitude
parameters(∆)

❖

❖

❖

❖

❖

❖ Binding + GSC

❖

❖

❖ FSI
❖ Results for CC
and NC

❖

Conclusions

22 / 26

FSI on nucleons is taken (Toy model !) through the used
effective fields within the RHA also for final N. While for pions
we use the Eikonal approach in its simplest version, that is
φπ → φ∗π, where

φ∗π(r) ∼ e−ipπ·re
−i/vπ

∫
∞

zπ
Vopt(b,z′)dz′ , r = (b, z′), (6)

Assuming a mean distance of trip for π in nucleus, constant
nucleon density and the ∆-h model for the π-optical potential
we get

φ∗π(r) ∼ e−ipπ·re−iλ(s)|pπ |<d>,

λ(s) =
2

9
(
fπN∆

mπ
)2

m2
Nρ0T

s(
√
s−m∗

∆ + 1/2Γ∗
∆)
,

< d > =
√
R2 − 2/3 < r >2, R = r0A

1/3, < r >= cA1/3.
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● Claculations are ∼ 50% below MoniBonne for CC 1π
(comparable to GiBUU Jul 2011) and ∼ 30% for NC π0

production.
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● Claculations are ∼ 50% below MoniBonne for CC 1π
(comparable to GiBUU Jul 2011) and ∼ 30% for NC π0

production.

● From νn→ µ−Nπ, with N = n, p and π = π+, π0, πN
invariance mass distribution and the ANL - BNL big errors
we see the contribution of higher resonances could be
important → we need to add them consistently to the
elemental amplitude.
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● Claculations are ∼ 50% below MoniBonne for CC 1π
(comparable to GiBUU Jul 2011) and ∼ 30% for NC π0

production.

● From νn→ µ−Nπ, with N = n, p and π = π+, π0, πN
invariance mass distribution and the ANL - BNL big errors
we see the contribution of higher resonances could be
important → we need to add them consistently to the
elemental amplitude.

● The FSI inclusion in very primitive and perhaps an
overvaluation of them is present → should be improved,
but
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● Note that at for example Eν = 1.5GeV for MiniBooNE and
ANL or BNL (without cuts) data :
σexpACC1π+/Aσ

exp
NCC1π+ ∼ 95%

σexpACC1π0/Aσ
exp
NCC1π0 ∼ 83%

σexpANC1π0/Aσ
exp
NNC1π0 ∼ 92%,

what seems indicate nuclear effects should be of much
minor importance, if the IA is assumed or that another
mechanisms should be considered
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π ρ ω...
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