CLAS12 Offline Software Tools

G.Gavalian (Jlab)
Overview

• **Data formats I/O**
 • gemc data reader
 • raw data reader
 • detector hit decoder
 • ET ring data reader

• **Geometry Package**
 • implementation of all baseline detectors
 • 3D viewer in CED

• **Plotting Package**
 • modern look and feel
 • fitting with Minuet
 • Latex label and text support

• **Calibration software**
 • unified calibration and monitoring suite
 • geometry tied to calibration plugins
EVIO Data Format

✓ Dictionary Based I/O:
 • reading banks produced by GEMC
 • writing reconstruction output banks
 • Dictionary in the file

✓ Raw Data I/O:
 • reading coda data for different modes (MODE=1,3,7)
 • automated translation tables for detectors (plugins)
 • standardized hit bank generation

✓ EVIO utilities:
 • splitting and merging files
 • GUI for viewing GEMC generated banks (in CED)
 • GUI for viewing and fitting RAW ADC spectra
 • Reading data from ET ring (online)

✓ BOS utilities:
 • Reader/Convertors for BOS (CLAS6) data to EVIO format
 • Unified Interface for analyzing data from CLAS6
 • Framework for PID, cuts and corrections for CLAS12 and CLAS6
 • Data format from CLAS6 can be passed to CLAS12 calibration and monitoring.
class myDecoder extends AbsTranslationTable{
 int getSector(crate,slot,channel){
 return 1;
 }
 int getLayer(crate,slot,channel){
 return 1;
 }
 int getComponent(crate,slot,channel){
 return 1;
 }
}
Standart Detector Geometry Package Implements:

• Forward Time of Flight
• Electromagnetic Calorimeter
• Forward Tagger
• Drift Chambers
• Silicon Vertex Tracker
• Central Neutron Detector

Geometry Tools and Utilities:

• Drawing package for 2D detector representation
• 3D shapes for CED-3D viewer
• Detector component tracker for Fast Monte-Carlo
3D GLASSES WILL COME in 2016 on select computers
Data Visualization

- **Plotting Library:**
 - histogram and graph classes implemented
 - plotting implemented matching ROOT API
 - Fitting added using Minuet library
 - Latex parsing added for titles and texts.
 - I/O of histograms implemented, with browser.
 - TNtuple class implemented for cut based plotting.
 - NTuple I/O implementation in progress

```java
TGCcanvas c1 = new TGCcanvas("c1", "JROOT Demo", 900, 800, 1, 1);
//c1.setFontSize(14);

H1D h1 = new H1D("h1", "ep #rarrow ep#gamma", 200, 0.0, 14.0);
H1D h2 = new H1D("h2", "ep #rarrow ep#gamma", 200, 0.0, 14.0);

h1.setXTitle("M^2 [GeV^2]" );
h1.setYTitle("Counts");
```
Histogram Object Browser

Random Histogram Demo

Entries: 12000
Mean: 99.9873
RMS: 28.8033

Entries: 12000
Mean: 100.0012
RMS: 48.5077

Entries: 12000
Mean: 99.9425
RMS: 51.5032
Tree Browser Object (DC monitoring)
Calibration and Monitoring

✓ Calibration & Monitoring Software:
 • Plugin based software framework
 • standard interface for passing data through modules
 • standard representation of the detector components
 • interface to draw relevant histograms for each component
 • automated plugin discovery from the package

void processEvent(EvioEvent e)
void drawComponent(sector, layer, component, canvas)
void getColor(sector, layer, component)
Calibration and Monitoring
FTOF Calibration

Work in progress
- Conversion of calibration algorithms to COATJAVA framework
- Integration of calibration plots and fits with standard monitoring GUI

Work planned
- Conversion of remaining calibration algorithms
- Fuller functionality within GUI and interfacing to calibration database

<table>
<thead>
<tr>
<th>Calibration area</th>
<th>COATJAVA development status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geometric mean / Log ratio</td>
<td>In progress</td>
</tr>
<tr>
<td>Effective velocity</td>
<td>In progress</td>
</tr>
<tr>
<td>Attenuation length</td>
<td>In progress</td>
</tr>
<tr>
<td>Time-walk</td>
<td>Planned</td>
</tr>
<tr>
<td>Counter status</td>
<td>Planned</td>
</tr>
<tr>
<td>TDC</td>
<td>Planned</td>
</tr>
<tr>
<td>RF offset</td>
<td>Planned</td>
</tr>
<tr>
<td>P2P constants</td>
<td>Planned</td>
</tr>
</tbody>
</table>
PCAL Calibration

✓ **PCAL/EC Calibration Software**
 - switched to using common tools
 - interfaces with UI developed for all detector components
FTCAL Calibration
✓ **Calibration & Monitoring Software:**
 - ET ring data reader in I/O framework
 - Interface to run Calibration and monitoring software from ET ring.
CLARA Data Challenge

- Reconstruction code tested in cloud environment (CLARA)
- Full chain running on one 32-thread (16-cores) machine
- Scaling with cores is linear
- Scaling with threads behaves as expected
- Reconstruction runs 6 ms/event on 24 core Haswell (50 machines to keep up with DAQ)
CLAS12 Offline software documentation:
- located: http://clasweb.jlab.org/clas12offline/docs/software/html/

Documented Software components:
- EVIO I/O for GEMC data and Raw DAQ data (**good**)
- Geometry package usage (**fair**)
- Plotting package (**in progress**)
- implementation of detector reconstruction (**good**)
- calibration and monitoring software implementation (**good**)

Documentation
What we need

✓ **Geometry:**
 - Detector groups to take ownership of the code and maintain it
 - Detector groups to come up with misalignment representation.

✓ **Calibration and Monitoring:**
 - Each detector needs to have a monitoring module developed.

✓ **Decoding:**
 - Translation tables need to be implemented for detectors
 - Common structure for writing EVIO files from composite format

✓ **Calibration DB:**
 - Define calibration constant tables in the CCDB database
 - Database contact person for collaborators
Summary

• Data reading/writing routines are all in place for detector commissioning and reconstruction software.
• Convenient framework is developed for DAQ data translation.
• Reconstruction plugin abstract classes are finalized and are ready for users.
• Geometry package is mature and implements most of the baseline detectors. It is used throughout entire CLAS12 software package including CED.
• Monitoring abstract interfaces are implemented and being developed based on group recommendations. Many groups started using it.
• Plotting package is sufficient for displaying plots and analysis results, features are being added constantly.