Photoproduction of Excited η Resonances

$\gamma p \rightarrow p\pi^+\pi^-\eta$ at CLAS

Cathrina Sowa

Ruhr-Universität Bochum
Institut für Experimentalphysik I
Motivation

- Supernumerous resonance with $J^{PC} = 0^{-+}$
- $\eta(1295)$
 - Seen in $\pi^- p$ scattering experiments
 - Seen by DM2 in $J/\psi \rightarrow \gamma \pi^- \pi^+ \eta$
 - No further observation
 - Interference with $f_1(1285)$
 - Artifact of f_1?
- $\eta(1405)$
 - Only seen in gluon rich processes like $\bar{p}p$ annihilations and radiative J/ψ decays
 - Not seen in photoproduction or $\gamma\gamma$ fusion
 - Decays to $K\overline{K}\pi$ and $\pi\pi\eta$
 - Glueball candidate
- $\eta(1475)$
 - Strong coupling to $K\overline{K}\pi$
 - Not yet seen in $\pi\pi\eta \rightarrow$ weak coupling
Event Selection

\[\gamma p \rightarrow p\pi^+\pi^- (\eta) \]

- \(g_{12} : \approx 60\% \)
- Photon energy 1.5 to 5.5 GeV
- Trigger Conditions: 3 charged tracks in 3 different sectors
 or 2 charged tracks in 2 different sectors
 and photon energy > 3.2 GeV
- Require:
 - 3 charged particles
 (2 positive, 1 negative)
 - PID: \(p, \pi^+, \pi^- \)
 - \(\eta \) reconstruction via missing mass method
- Origin in target: \(r < 2 \text{ cm}, \)
 \(-110 < z < -70 \text{ cm}\)
- Timing: \(\Delta t = t_{\text{Tagger}} - t_{\text{StartCounter}}, \)
 \(|\Delta t| < 0.5 \text{ ns}\)
- Minimal momentum: \(p_p > 0.3 \text{ GeV/c}, \)
 \(p_{\pi^+, \pi^-} > 0.1 \text{ GeV/c}\)
- Fiducial volume cut
- PID: \(\beta_{\text{calc}} = \frac{p}{\sqrt{m_{\text{PDG}}^2 + p^2}} \)
 \(\Rightarrow d = \beta_{\text{calc}} - \beta_{\text{meas}} \Rightarrow |d| < 0.04 \)
- Cut on missing mass:
 \(480 \text{ MeV/c}^2 < m_{\text{miss}} < 620 \text{ MeV/c}^2 \)
- Track Efficiency
 \(\Rightarrow \approx 18.6 \cdot 10^6 \text{ events} \)
Event-based Background Suppression

Assumption: Distribution of background events in a small cell of the phasespace is different compared to signal events.

→ **Event-by-event procedure:**

- **First step:** find N nearest neighbours B of seed event A in phasespace
 - Define metric to calculate distances in phasespace
 - Choose N events with smallest distance to seed event

- **Second step:** fit invariant mass spectrum $m(\eta)$ of nearest neighbours with appropriate functions for signal and background

Metric contains:
- Production angle η'
- E_γ
Event-based Background Suppression

- Third step: calculate signal to background ratio

\[Q = \frac{f_s s}{f_s s + (1-f_s) b} \]
\[s = S(m_{seed}) \]
\[b = B(m_{seed}) \]

- Fourth step: normalize S/B and assign it as probabilistic weight for each event

- **Benefit:** No knowledge on the origin of background is needed!
Differential Cross Section of $\gamma p \rightarrow p \eta'$

Differential cross section of $\gamma p \rightarrow p \eta'$:

CLAS g11 run

This work (g12 run)
Excited η states in $\gamma p \rightarrow p\pi^+\pi^- (\eta)$

- Broad η peak
- Neutral kaon contribution
- Kinematic fit takes background events in as well as “real” η events
 \rightarrow Q-factor method on missing mass in η region

Huge background contribution.
Weighted Missing η Mass Spectrum

Metric:

- Angular Distributions
- E_γ
- $m^2(\pi^+\pi^-\eta)$

- Unweighted
- Q weighted
- 1-Q weighted
Weighted $\pi^+\pi^-\eta$ Invariant Mass Spectrum

Peaking background, e.g. $\eta' \rightarrow \pi^0\pi^0\eta(\pi^+\pi^-\pi^0)$
Weighted $\pi\pi\eta$ Invariant Mass Spectrum

Contribution of $\gamma p \rightarrow p\Phi \rightarrow pK_sK_L \rightarrow p\pi^+\pi^- m_{miss}$
Motivation

Data Reconstruction and Analysis

Summary

\[M_x(p) \text{ Vs. } M_X(p\pi^+\pi^-) \]

Horizontal Band crossing under \(\eta' \) and \(\eta(1295)/f_1(1285) \)

Possible background channels:

- \(\Phi \rightarrow K_s(\pi^+\pi^-)K_L(m_{miss}) \)
- \(\eta' \rightarrow \pi^0\pi^0\eta(\pi^+\pi^-\pi^0) \)
- \(f_1(1285) \rightarrow 4\pi \)
- \(\eta(1295) \rightarrow \pi^0\pi^0\eta(\pi^+\pi^-\pi^0) \)
- ...
Motivation

Data Reconstruction and Analysis

Summary

$M_X(p) \text{ Vs. } M_X(p\pi^+\pi^-)$

Selecting a band with signal events and two bands for sideband each half the width of the signalband
$M_X(p)$ for Signalband and Sidebands in bins of E_γ
Weighted $\pi\pi\eta$ Invariant Mass Spectrum

1-C kinematic fit with η mass constraint

$prob > 0.01$
Summary

- Study of excited η mesons in $\gamma p \rightarrow p\pi^+\pi^-\eta$
 - Sample of $18.6 \cdot 10^6$ reconstructed events
 - Successfully applied event-based background suppression to η' and missing η
 - Observed an enhancement at ≈ 1295 MeV/c2 and at ≈ 1417 MeV/c2
- Extracted $\gamma p \rightarrow p\eta'$ differential cross section from g12 data
 - Good agreement with previous study, for Q-factor method on η'
 - Small discrepancies for Q-factor method on $M_x(p\pi^+\pi^-)$ (under investigation)
- Next steps:
 - Further investigation of the nature of the enhancement at 1290 MeV/c2
 - Extract (upper limit) of $\eta(1405)$ production cross section
Differential Cross Section of $\gamma p \rightarrow p\eta'$

CLAS g11 run

This work (g12 run)

Q-factor method for η