A Study of 3π production in $\gamma p \rightarrow n\pi^+\pi^+\pi^-$ and $\gamma p \rightarrow \Delta^{++}\pi^+\pi^-\pi^-$ with CLAS at Jefferson Lab

Aristeidis Tsaris
Florida State University

CLAS Collaboration Meeting
Newport News, VA
October 21-23, 2015
Using the CLAS-g12 dataset we selected events with three charge pions, measured by the CLAS spectrometer and identified a neutron by energy and momentum conservation.

- Analysis is being redone in preparation of publication
 - Error was found in the parametrization of the partial waves
 - New data selection and new Monte Carlo with analysis in line with g12 analysis note procedures
Error Found in the Parametrization of the Partial Waves

- helicity amplitudes are not parity eigenstates

- reflectivity amplitudes are linear combinations of helicity amps which are parity eigenstates.

\[
|\epsilon m\rangle = \left[|am\rangle - \epsilon P(-1)^J m|a - m\rangle\right]\theta(m)
\]

(38)

where \(P\) is the parity of the state ‘a’ and

\[
\theta(m) = \begin{cases}
\frac{1}{\sqrt{2}}, & m > 0 \\
\frac{1}{2}, & m = 0 \\
0, & m < 0
\end{cases}
\]

(39)

The reflectivity \(\epsilon\) is here defined such that it coincides with the naturality of exchanged Regge trajectories. Note that

\[
|\epsilon m\rangle = 0 \text{ for } m = 0, \quad \text{if } \epsilon = P(-1)^J
\]

(40)

--------- Chung ---------
Enhance Peripheral Production

$\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

$\text{Mass}(\pi^+ \pi^+ \pi^-)$ (GeV/c^2)

$\text{Mass}(n, \pi_{fast}^+)$ (GeV/c^2)

$\text{Mass}(n, \pi^-)$ (GeV/c^2)
Further Reducing the Baryon Background

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

\[\theta_{lab}[\pi_{slow}] < 25^o \]
Features of the 3π sample

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

\[M_{3\pi} < 1.5 \text{GeV} \]

\[M_{3\pi} > 1.5 \text{GeV} \]

\[M^2(\pi^-, \pi_{\text{fast}}) \]

\[M^2(\pi^-, \pi_{\text{slow}}) \]

\[M^2(\pi^+, \pi_{\text{slow}}) \]

\[M^2(\pi^+, \pi_{\text{fast}}) \]

\[(\text{GeV}/c^2)^2 \]

\[\text{Entries 328323} \]

\[\text{Entries 184774} \]

\[\text{Entries 528898} \]

\[\text{Events/14 MeV/c}^2 \]

\[\text{Events/14 GeV/c}^2 \]

\[\text{Events/14 (GeV/c) }^2 \]

\[\text{Events/14 (GeV/c) }^3 \]

Aristeidis Tsaris

Florida State University
Partial Wave Analysis

- A mass independent pwa is performed using an event based likelihood fit
- To calculate the amplitudes we used helicity formalism in the reflectivity basis using the isobar model

\[I(\tau) = \sum_{\kappa \epsilon} \left| \sum_{\alpha} \epsilon^\kappa V_{\alpha} \epsilon^\alpha A_\alpha(\tau) \right|^2 \]

- For the current fit a total of 17 partial waves were used in the high mass region and 13 partial waves in the low mass region
Features of the partial waves of the 3π System for the $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

- **Intensity of 2++ D waves**

 \[M = 1.318 \text{ GeV} \]
 \[\Gamma = 0.130 \text{ GeV} \]

 - Curve is with Craig's fitting parameters

- **Intensity of 1++ S waves**

 \[M = 1.200 \text{ GeV} \]
 \[\Gamma = 0.380 \text{ GeV} \]

- **Phase difference between 1++1-S and 2++1-D waves**

- **Phase difference between 1++1+S and 2++1+D waves**

 Curve is with Craig's fitting parameters
Features of the partial waves of the 3π System for the $\gamma p \rightarrow n\pi^+\pi^+\pi^-$

- **Intensity of 2++ D waves**
 - $M = 1.318$ GeV
 - $\Gamma = 0.130$ GeV
 - Curve is with Craig's fitting parameters

- **Mass ($\pi^+\pi^+\pi^-$)**
 - $M = 1.200$ GeV
 - $\Gamma = 0.380$ GeV

- **Phase difference between 1++1-S and 2++1-D waves**

- **Phase difference between 1++1+S and 2++1+D waves**

- **Fitting simultaneously intensities of 1++, 2++ and their phase difference**
 - $M = 1.319 \pm 0.001$
 - $\Gamma = 0.099 \pm 0.002$

- **Curve is with Craig's fitting parameters**

- **X^2/DoF ≈ 3**

Aristeidis Tsaris
Florida State University
Features of the partial waves of the 3π System for the $\gamma p \rightarrow n\pi^+\pi^+\pi^-$

- $M = 1.640 \text{ GeV}$
- $\Gamma = 0.260 \text{ GeV}$

Intensity of 2-+ S waves

Curve is a non-resonant 1-+ and 2-+ wave

$M = 1.640 \text{ GeV}$
$\Gamma = 0.260 \text{ GeV}$

Intensity of 1-+ P waves

Curve is with Craig's fitting parameters

$M = 1.640 \text{ GeV}$
$\Gamma = 0.260 \text{ GeV}$
Features of the partial waves of the 3π System for the $\gamma p \to n \pi^+ \pi^+ \pi^-$

Fitting simultaneously intensities of 2-, 1-+ and their phase difference

Fitting with 1-+ resonance results a non-resonant solution

- **Intensity of 2-+1-S wave**
 - $M = 1.636 \pm 0.002$
 - $\Gamma = 0.251 \pm 0.006$

- **Intensity of 1-+1-P wave**
 - $M = 2.036 \pm 0.047$
 - $\Gamma = 0.000002 \pm 0.000001$

- **Phase 2-+1-S, 1-+1-P wave**
 - $\chi^2/\text{DoF} \approx 4$

- **Intensity of 2-+1+S wave**
 - $M = 0.947 \pm 0.439$
 - $\Gamma = 3.000 \pm 0.001$

- **Intensity of 1-+1+P wave**
 - $M = 1.634 \pm 0.002$
 - $\Gamma = 0.246 \pm 0.007$

- **Phase 2-+1+S, 1-+1+P wave**
 - $\chi^2/\text{DoF} \approx 5$
Using the CLAS-g12 dataset we selected events with four charge pions, measured by the CLAS spectrometer and identified a proton by energy and momentum conservation.
Kinematic Separation of the Δ^{++}

$\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

Momentum Difference:

$|\vec{p}_{\pi_1} - |\vec{p}_{\pi_2}| > 0.35$ (GeV/c)

Background Δ^{++}

Signal Δ^{++}

Mass(p, π_{fast}^+) (GeV/c2)

Mass(p, π_{slow}^+) (GeV/c2)

Aristeidis Tsaris

Florida State University
Data Selection and Background Reduction

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

\[+ M_{p \pi^+_\text{slow}} < 1.35 \]

- Black → Data
- Red → Data with Cuts
- Blue → MC with Cuts
Features of the 3π sample

$\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

$M_{3\pi} < 1.5 \text{GeV}$

$M_{3\pi} > 1.5 \text{GeV}$
Partial Wave Analysis

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

- A mass independent pwa is performed using an event based likelihood fit
- To calculate the amplitudes we used helicity formalism in the reflectivity basis using the isobar model

�(τ) = \[\sum_{\kappa \epsilon} \left| \sum_{\alpha} \epsilon_\kappa V_\alpha \epsilon A_\alpha (\tau) \right|^2 \]

- For the current fit a total of 13 partial waves were used in the high mass region and 9 partial waves in the low mass region
Features of the partial waves of the 3π System for the $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$ reaction:

- **Intensity of 2++ D waves**
 - Mass $M = 1.318$ GeV
 - Width $\Gamma = 0.105$ GeV
 - Curve is just to guide the eye

- **Intensity of 1++ S waves**
 - Mass $M = 1.260$ GeV
 - Width $\Gamma = 0.367$ GeV

- **Phase difference between 1++1-S and 2++1-D waves**

- **Intensity of 1++ D waves**
 - Mass $M = 1.307 \pm 0.003$ GeV
 - Width $\Gamma = 0.100 \pm 0.006$ GeV

Fitting simultaneously intensities of 1++, 2++ and their phase difference gives:

- 2++1-D
 - Mass $M = 1.280 \pm 0.005$ GeV
 - Width $\Gamma = 0.244 \pm 0.017$ GeV
- 1++1-S
- 1++1-S - 2++1-D
 - $X^2/DoF \approx 1.8$
Features of the partial waves of the 3π System for the $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

leakage of $a_2(1320)$ into the P-wave

Total Intensity of 2-+ waves

Intensity of 2-+ S waves

Intensity of 2-+ D waves

Aristeidis Tsaris
Florida State University
Summary

- $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$:
 - The $a_2(1320)$ and the $a_1(1260)$ are observed
 - The $\pi_2(1670)$ is observed
 - The $J^{PC} = 1^{--}$ appears to have no phase motion relative to the $\pi_2(1670)$

- $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$:
 - A first time PWA of the $\Delta^{++} 3\pi$ system
 - The $a_2(1320)$ and the $a_1(1260)$ are observed
 - The $\pi_2(1670)$ is observed
Back up slides
List of Waves used for the current Fit $\gamma p \rightarrow n \pi^+ \pi^+ \pi^-$

$M_{3\pi} < 1.4 \text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), \sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic background wave

$M_{3\pi} > 1.4 \text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), \sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic background wave
List of Waves used for the current Fit $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>1$^{-/+}$</td>
<td>S, D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2^{++}</td>
<td>1$^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>1$^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic Background Wave

$M_{3\pi} < 1.4 \text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^ϵ</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>1$^{-/+}$</td>
<td>S, D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2^{++}</td>
<td>1$^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>1$^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic Background Wave

$M_{3\pi} > 1.4 \text{ GeV}$