Semi-Inclusive DIS with a longitudinally polarized neutron

Silvia Pisano
Laboratori Nazionali di Frascati
INFN

Transverse Momentum Distributions through Semi-Inclusive Deep-Inelastic Scattering

3D description of the nucleon structure in the momentum space → full 3D dynamics of the partons

Transition from hadronic to partonic degrees of freedom → Fragmentation Functions & Hadronization mechanisms

hidden strangeness in the nucleon

Access to quark-gluon-quark correlations through higher-twist observables

Transverse Momentum Dependent PDFs&FFs

8 leading-twist TMDs

They depend on the parton longitudinal fraction x and on its transverse momentum $k_T \rightarrow \textit{full 3D dynamics}$

Leading Twist TMDs

<table>
<thead>
<tr>
<th>Nucleon Spin</th>
<th>Quark Spin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-Polarized (U)</td>
<td>Longitudinally Polarized (L)</td>
</tr>
<tr>
<td>U</td>
<td>$f_i^\perp = \downarrow \rightarrow \uparrow$</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>$f_{1T}^\perp = \uparrow \rightarrow \downarrow$</td>
</tr>
<tr>
<td></td>
<td>$g_{1T}^\perp = \uparrow \rightarrow \downarrow$</td>
</tr>
<tr>
<td></td>
<td>$h_{1T}^\perp = \downarrow \rightarrow \uparrow$</td>
</tr>
</tbody>
</table>

Fragmentation Functions \rightarrow transition from partonic to hadronic degrees of freedom

<table>
<thead>
<tr>
<th>q/H</th>
<th>U</th>
<th>L</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>U</td>
<td>D_1</td>
<td></td>
<td>H_1^+</td>
</tr>
<tr>
<td>L</td>
<td></td>
<td>G_{1L}</td>
<td>H_{1L}^+</td>
</tr>
<tr>
<td>T</td>
<td>H_1^+</td>
<td>G_{1T}</td>
<td>H_1, H_{1T}^+</td>
</tr>
</tbody>
</table>

- different hadrons in the final state provide information on the hadronization of different flavors
- measurements on DIFFERENT TARGETS are essential to perform flavor separation and access TMDs of individual flavors

Single-hadron SIDIS cross-section

Depending on the degrees of freedom active in the process, various TMD&FF can be accessed:

\[
\frac{d\sigma^h}{dz dy d\phi_S dz d\phi dP_h^2} = \frac{\alpha^2 \gamma^2}{xyQ^2 2(1 - \epsilon)} \left(1 + \frac{\gamma^2}{2x}\right)
\]

\[
\left\{ \begin{aligned}
F_{UU,T} + \epsilon F_{UU,L} \\
+ \sqrt{2\epsilon (1 + \epsilon)} \cos(\phi) F_{UU}^{\cos(\phi)} + \epsilon \cos(2\phi) F_{UU}^{\cos(2\phi)} \\
+ \lambda_l \sqrt{2\epsilon (1 - \epsilon)} \sin(\phi) F_{LU}^{\sin(\phi)} \\
+ \sqrt{2\epsilon (1 + \epsilon)} \sin(\phi) F_{UL}^{\sin(\phi)} + \epsilon \sin(2\phi) F_{UL}^{\sin(2\phi)} \\
+ T \left[\sin(\phi - \phi_s) \left(F_{UT,T}^{\sin(\phi - \phi_s)} + \epsilon F_{UT,L}^{\sin(\phi - \phi_s)} \right) \\
+ \epsilon \sin(\phi + \phi_s) F_{UT}^{\sin(\phi + \phi_s)} + \epsilon \sin(3\phi - \phi_s) F_{UT}^{\sin(3\phi - \phi_s)} \\
+ \sqrt{2\epsilon (1 + \epsilon)} \sin(\phi_s) F_{UT}^{\sin(\phi_s)} \\
+ \sqrt{2\epsilon (1 + \epsilon)} \sin(2\phi - \phi_s) F_{UT}^{\sin(2\phi - \phi_s)} \right] \\
+ \lambda_l \sqrt{1 - \epsilon^2} \cos(\phi - \phi_s) F_{LT}^{\cos(\phi - \phi_s)} \\
+ \sqrt{2\epsilon (1 - \epsilon)} \cos(\phi_s) F_{LT}^{\cos(\phi_s)} \\
+ \sqrt{2\epsilon (1 - \epsilon)} \cos(2\phi - \phi_s) F_{LT}^{\cos(2\phi - \phi_s)} \right\}
\]

18 structure functions appear in the cross-section

\[F_{ij,K} \propto DF \otimes FF\]

JLab TMD program explored the different terms:

1. Unpolarized contributions (Hall-B, Hall-C)
2. Longitudinally-polarized contributions (Hall-B)
3. Transversely-polarized contributions (Hall-A)
Longitudinal Target-Spin Asymmetry on deuterium

\[A_1 = A_{LL} \propto \frac{g_1 \otimes D_1}{f_1 \otimes D_1} \]

\[F_{UL}^{\sin \phi_h} = \left(\frac{2M}{Q} \right) C \left[-\frac{\hat{h} \cdot k_T}{M_h} \left(x h_L H_1^+ + \frac{M_h}{M} g_{1L} \tilde{G}^- \frac{1}{z} \right) + \frac{\hat{h} \cdot p_T}{M} \left(x f_{1L}^D D_1 - \frac{M_h}{M} h_{1L}^+ \tilde{H} \frac{1}{z} \right) \right] \]

\[F_{UL}^{\sin 2\phi_h} = C \left[-\frac{2 (\hat{h} \cdot k_T) (\hat{h} \cdot p_T) - k_T \cdot p_T}{MM_h} h_{1L}^+ H_1^+ \right], \]

- Measurements on deuterium are available from HERMES and COMPASS, need to be (further) extended to VALENCE QUARK region
- low-\(Q^2\) important to test the presence of possible evolution effects on TMDs & FFs
- CLAS12 will allow to explore both pions & kaons channel \(\rightarrow\) see M. Contalbrigo’s contribution
- Combining ND3 and NH3 measurement will allow to perform a flavor separation on the TMDs: compatible precision on hydrogen and deuterium is important to access flavor’s TMDs \(\rightarrow\) see A. Courtoy’s contribution
- many semi-inclusive processes (single-hadron, di-hadron, back-to-back SIDIS), with the specific observables they granted access to, will benefit of additional ND3 days \(\rightarrow\) see H. Avakian’s contribution

Model comparison

- high-x region almost unexplored
- it is the region where models deviate greatly from data
- high-x region on kaon data deviates consistently from models → CLAS12 + RICH + ND3 can provide important constraints
Toward a 5D mapping of the nucleon

Transverse Momentum Dependent and Generalized Parton Distributions are reduction of the Wigner Mother Functions, encoding the 5D structure of the nucleon

TMDs → Semi-Inclusive DIS: $e\, p \rightarrow e\, h\, X$

GPDs → Deeply-Virtual Compton Scattering: $e\, p \rightarrow e\, p\, \gamma$

CLAS12 is the perfect environment to access these two processes

Provide projections in the «5D space» in terms of DVCS variables ($x_B, Q^2, -t, \varphi$) and SIDIS variables (x_B, Q^2, z, P_T) in the common electron (x_B, Q^2) kinematics

1D PDFs are the common part → to be constrained simultaneously from the two processes

- r_\perp: $-t$ from DVCS (at $\xi = 0$)
- k_\perp: P_T from SIDIS

Goal: provide a 5D data set
backup
Semi-Inclusive DIS and Transverse Momentum Distributions

\[F_{UU,T} = C[f_1 D_1], \]

\[F_{UU,L} = 0, \]

\[F^{\cos \phi_{h}}_{UU} = \frac{2M}{Q} C \left[-\frac{\hbar \cdot k_T}{M_h} \left(x h H_1^T + \frac{M_h}{M} f_1 \tilde{D}^T \frac{1}{z} \right) - \frac{\hbar \cdot p_T}{M} \left(x f_1^T D_1 + \frac{M_h}{M} h_1^T \tilde{H} \frac{1}{z} \right) \right], \]

\[F^{\cos 2\phi_{h}}_{UU} = C \left[-\frac{2 \left(\frac{\hbar \cdot k_T}{M_h} \left(\frac{\hbar \cdot p_T}{M} - k_T \cdot p_T h_1^T H_1^T \right) \right)}{M M_h} \right], \]

\[F^{\sin \phi_{h}}_{LU} = \frac{2M}{Q} C \left[-\frac{\hbar \cdot k_T}{M_h} \left(x c H_1^T + \frac{M_h}{M} f_1 \tilde{G}^T \frac{1}{z} \right) + \frac{\hbar \cdot p_T}{M} \left(x g_1^T D_1 + \frac{M_h}{M} h_1^T \tilde{E} \frac{1}{z} \right) \right], \]

\[F^{\sin \phi_{h}}_{UL} = \frac{2M}{Q} C \left[-\frac{\hbar \cdot k_T}{M_h} \left(x h L H_1^T + \frac{M_h}{M} g_{1L} \tilde{G}^T \frac{1}{z} \right) + \frac{\hbar \cdot p_T}{M} \left(x f_1^T D_1 - \frac{M_h}{M} h_1^T \tilde{H} \frac{1}{z} \right) \right], \]

\[F^{\sin 2\phi_{h}}_{UL} = C \left[-\frac{2 \left(\frac{\hbar \cdot k_T}{M_h} \left(\frac{\hbar \cdot p_T}{M} - k_T \cdot p_T h_1^T H_1^T \right) \right)}{M M_h} \right], \]

\[F_{LL} = C[g_{1L} D_1], \]

\[F^{\cos \phi_{h}}_{LL} = \frac{2M}{Q} C \left[\frac{\hbar \cdot k_T}{M_h} \left(x c L H_1^T - \frac{M_h}{M} g_{1L} \tilde{D}^T \frac{1}{z} \right) - \frac{\hbar \cdot p_T}{M} \left(x g_1^T D_1 + \frac{M_h}{M} h_1^T \tilde{E} \frac{1}{z} \right) \right] \]
COMPASS measurement (on unidentified hadrons)