Potential of EDM Measurement in Figure-8 Ring

A.M. Kondratenko, M.A. Kondratenko, Yu.N. Filatov, Ya.S. Derbenev, and V.S. Morozov

EDM discussion with IKP@FZG at JLab
February 4, 2016
Spin Dynamics

- Generalized Thomas-BMT equation

\[
\frac{d\vec{S}}{dt} = \vec{\Omega} \times \vec{S},
\]

Thomas precession

\[
\vec{\Omega} = -\frac{e}{\gamma mc} \left((1 + G)\vec{B}_{\text{rest}} + G_d \vec{E}_{\text{rest}} + \frac{\gamma - 1}{\gamma \nu^2} \vec{v} \times \vec{E}_{\text{rest}} \right)
\]

Spin rotation due to MDM
\[
\vec{\mu} = (1 + G)\frac{e\hbar}{mc} \vec{S}
\]

Spin rotation due to EDM
\[
\vec{a} = G_d \frac{e\hbar}{mc} \vec{S}
\]

- Thomas-BMT expressed through fields in the laboratory frame

\[
\vec{\Omega} = -\frac{e}{\gamma m} \left[(1 + G)\vec{B}_\parallel + (1 + \gamma G)\vec{B}_\perp + \gamma \left(G + \frac{1}{\gamma + 1} \right) \vec{E} \times \vec{v} + G_d \vec{E}_\parallel + \gamma G_d \left(\vec{E}_\perp + \vec{v} \times \vec{B} \right) \right]
\]
Spin Dynamics

- Spin equation in the frame aligned with the particle velocity

\[
\frac{d\vec{S}}{d\theta} = \vec{W} \times \vec{S}, \quad \vec{W}_\perp = \gamma G(\vec{\tau} \times \vec{\tau}') - \gamma v G_d \vec{\tau}' + (1 + G) \frac{\vec{\tau} \times \vec{D}}{\gamma v} \quad \vec{W}_\parallel = \left((1 + G) H_\parallel + G_d D_\parallel \right) \vec{\tau}
\]

\[
\vec{\tau} = \vec{\nu} / v, \quad \vec{\tau}' = d\tau / d\theta, \quad \vec{\tau} = \vec{\nu} / v, \quad \vec{\tau}' = d\tau / d\theta, \quad \vec{H} = \vec{B} / B_0, \quad \vec{D} = \vec{E} / B_0, \quad B_0 = -pc / eR
\]

- Spin precession in the frame aligned with the particle velocity expressed through lab-frame fields

\[
\vec{\Omega} - \vec{\tau} \times \frac{d\vec{\tau}}{dt} = -\frac{e}{\gamma m} \left[(1 + G) \vec{B}_\parallel + \gamma G \vec{B}_\perp + \gamma v \left(G - \frac{1}{\gamma^2 v^2} \right) \vec{E} \times \vec{\nu} + G_d \vec{E}_\parallel + \gamma G_d \left(\vec{E}_\perp + \vec{\nu} \times \vec{B} \right) \right]
\]

where

\[
\frac{d\vec{\tau}}{dt} = \frac{e}{\gamma m} \left(\frac{\vec{E}_\perp + \vec{\tau} \times \vec{B}}{v} \right)
\]
EDM Effect

- Current state of EDM data
 - Direct measurement only for neutron, EDM < 3 \cdot 10^{-26} \text{ e\cdot cm}
 - Proton EDM deduced from atomic EDM limit, EDM < 7.9 \cdot 10^{-25} \text{ e\cdot cm}
 - No measurement for deuteron or other nuclei

- Expected proton EDM values
 - Standard model, EDM < 3 \cdot 10^{-31} \text{ e\cdot cm} \Rightarrow G_d \sim 5 \cdot 10^{-17}
 - Extensions of Standard model, EDM as large as 3 \cdot 10^{-24} \text{ e\cdot cm} \Rightarrow G_d \sim 5 \cdot 10^{-11}

- MDM spin transparency: spin effect of fields vanishes without EDM

\[\left\langle G \vec{H}_{\perp} + \left(G - \frac{1}{\gamma^2 v^2} \right) \vec{D} \times \vec{v} \right\rangle = 0 \quad \left\langle H_{||} \right\rangle = 0 \quad \vec{W}_{\perp} = -\gamma v G_d \vec{\tau}' \quad \vec{W}_{||} = G_d D_{||} \vec{\tau} \]

- Existing approaches
 - Purely electric ring at a magic energy (BNL), does not work for $G < 0$
 \[
p^* = \gamma v mc = mc / \sqrt{G}
 \]
 - Combination of magnetic and electric field (COSY)
- Potentially new opportunities for EDM measurements
- By the basic design, both MDM and EDM spin transparent
- Longitudinal RF electric fields introduced for EDM measurement
 - RF provides additional flexibility for enhancing EDM measurements
- EDM measurement in a figure-8 ring
 1. Calibration of spin transparent regime without electric fields
 2. Turn on electric fields in symmetric pairs

\[
\nu = \frac{2}{\pi} \varphi_D \sin \frac{\varphi_y}{2}, \quad \varphi_D = G_d D_y L_y, \quad \varphi_y = \gamma G \alpha_y
\]
2n bunches with alternating polarizations
- Similar to having two beams for systematics suppression

2n-harmonic cavity for stabilization of longitudinal motion

Two pairs of n-harmonic cavities for EDM effect
- Effects of magnetic fields cancel (ignoring the difference in off-momentum closed orbits)
- EDM effects add up for the opposite polarity bunches
- If start vertically polarized monitor buildup of transverse polarization

Control of remaining systematic effects
- Symmetry
- Calibration
- Closed orbit monitoring and control
- RF field focusing can be compensated by overtone resonators

\[\varphi_y \approx \pi \quad M_{56} = 0 \]
Zero-Integer Spin Resonance & Spin Stability Criterion

- The total zero-integer spin resonance strength

\[w_0 = w_{\text{coherent}} + w_{\text{incoherent}}, \quad w_{\text{incoherent}} \ll w_{\text{coherent}} \]

is composed of
- coherent part \(w_{\text{coherent}} \) due to closed orbit excursions
- incoherent part \(w_{\text{incoherent}} \) due to transverse and longitudinal emittances

- The coherent part can be compensated by small static magnetic fields

- Spin stability criterion
 - the spin tune induced by the EDM must significantly exceed the incoherent part

\[\nu \gg w_{\text{incoherent}} \]

- Estimates of the incoherent part of the resonance strength
 - Random simple lattice of figure 8

\[w_{\text{incoherent}} \sim 10^{-7} - 10^{-5} \text{ for protons, } w_{\text{incoherent}} \sim 10^{-9} - 10^{-7} \text{ for deuterons} \]

 - Lattice with special symmetries of betatron motion

\[w_{\text{incoherent}} \sim 10^{-14} - 10^{-10} \text{ for protons, } w_{\text{incoherent}} \sim 10^{-18} - 10^{-14} \text{ for deuterons} \]
Incoherent Part for Protons

- Ideal figure-8, fixed $p = 0.785$ GeV/c, $V = 6$ kV
- Stable polarization direction vertical as expected!
- Scales as a square of the betatron amplitude

\[x_0 = y_0 = 10 \text{ mm}, \quad x'_0 = y'_0 = 0, \quad \Delta p/p = 0 \]

\[w_{\text{incoherent}} = \frac{1}{T} \approx 10^{-5} \]

\[x_0 = y_0 = 1 \text{ mm}, \quad x'_0 = y'_0 = 0, \quad \Delta p/p = 0 \]

\[w_{\text{incoherent}} = \frac{1}{T} \approx 10^{-7} \]

Here and later all spin and orbital tracking done using Zgoubi by Francois Meot
Incoherent Part for Deuterons

- Ideal figure-8, fixed $p = 0.785$ GeV/c
- Stable polarization again vertical
- Original strength estimates are correct
- Transverse size reduction (cooling) is highly beneficial

$$x_0 = y_0 = 10 \, mm, \quad x'_0 = y'_0 = 0, \quad \Delta p/p = 0$$

$$w_{incoherent} = \frac{1}{T} \approx 10^{-7}$$

$$x_0 = y_0 = 1 \, mm, \quad x'_0 = y'_0 = 0, \quad \Delta p/p = 0 \quad w_{incoherent} \approx 10^{-9}$$
Time Estimate of EDM Experiment

- In the scheme with two pairs of RF resonators

\[G_d = \frac{L \gamma mc^2}{c \tau 4eE_{\parallel}L_{\parallel}} \psi_d \]

- Example for deuterons

\[\psi_d = 10^{-2}, \quad \tau = 10^4 \text{ s}, \quad L = 300 \text{ m}, \quad eE_{\parallel}L_{\parallel} = 20 \text{ MeV}, \quad \gamma mc^2 = 2 \text{ GeV} \]

\[G_d = 2.5 \cdot 10^{-11} \Rightarrow \text{deuteron EDM} = 2.5 \cdot 10^{-25} \text{ e \cdot cm} \]
Conclusions

Properties and features of figure-8 rings beneficial for EDM experiments

1. Automatic compensation of MDM and EDM effects on the spin due to basic lattice
2. EDM can be measured using longitudinal electric fields, which do not bend the orbit
3. Compensation of the coherent part of the zero-integer resonance strength allows one to reduce a “real” lattice to an “ideal” one without implementation errors
4. By choosing a special symmetry of the ring optical elements, one can significantly reduce the part of the resonance strength depending on the beam emittances
5. Use of electron cooling allows for additional reduction of the incoherent part of the resonance strength
6. Figure-8 rings allow measurements of EDM of any particle species at any energy
7. Figure 8 is especially efficient for EDM measurements with deuteron beams
Backup Slides
The coherent part of zero-integer spin resonance induced by perturbing radial field $h_x(\theta)$ can be calculated using periodical response function $F(\theta)$:

$$w_{\text{coherent}} = \gamma G(h_x(\theta)F(\theta))$$

- $F(\theta)$ is calculated from linear optics
- Perturbing radial fields arise, for example, due to dipole roll errors, vertical quadrupole misalignments, etc. Such perturbing fields result in vertical closed orbit distortion
RMS Vertical Closed Orbit Distortion

- Assuming certain rms vertical closed orbit distortion, we statistically calculate vertical orbit offset in the quadrupoles and resonance strength.

- RMS Vertical Closed Orbit Distortion for random misalignment of all quads:
 - Assuming that orbit distortion in the arcs < 100 μm
Coherent Part of Resonance Strength

- 2 T × 2 m control solenoids allow setting $\nu_p = 10^{-2}$ and $\nu_d = 10^{-4}$
 - Sufficient for polarization stabilization and control

The coherent part of the zero-integer spin resonance strength is determined by closed orbit distortions.

- Orbit distortion does not exceed ±100 μm
Incoherent Part of Resonance Strength

- Effect of higher-order resonances due to incoherent tune spread requires study similarly to the case of two Siberian snakes.
- The incoherent part of the zero-integer spin resonance strength is determined by emittances of betatron and synchrotron oscillations and depends on magnetic lattice.
- In an ideal lattice, the incoherent part is determined primarily by the emittance of vertical betatron oscillations.
- Incoherent part of the spin field is vertical in the second order.

\[\text{Incoherent Part of Resonance Strength} \]
Incoherent Part of Resonance Strength

- Ideal figure-8 booster, on-momentum particles with 1 cm offsets in x and y
- Stable polarization direction vertical as expected!

Here and later all spin and orbital tracking done using Zgoubi by Francois Meot
Synchrotron Motion Effect

- Ideal figure-8 booster
- Three particles uniformly distributed on a longitudinal phase-space ellipse with $\Delta p/p = 5 \times 10^{-4}$, each particle has initial 1 cm offset in x and y
- **Almost no momentum dependence!**
Primary contribution to the coherent part comes from transverse quadrupole shifts

\[\sigma = (\Delta x_{\text{quad}})_{\text{rms}} = 10^{-3} \text{ cm} \]

\[\sigma = (\Delta y_{\text{quad}})_{\text{rms}} = 10^{-3} \text{ cm} \]
Coherent Part of Resonance Strength

- Stable spin direction due to coherent part lies in the horizontal plane
- On-momentum particle launched along CO
- Precession rate gives the value of the coherent part of the spin resonance strength
Stabilization of Proton Spin

- Figure-8 booster with transverse quadrupole misalignments
- 0.1 Tm (maximum) spin stabilizing solenoid
- On-momentum particle with 1 cm offsets in x and y
Incoherent Part of Resonance Strength

- Ideal figure-8 booster, on-momentum particles with 1 cm offsets in x and y
- **Stable polarization direction vertical as expected!**
- Incoherent part of the resonance strength $<10^{-8}$

![Graph showing incoherent part of resonance strength](attachment:image.png)
Same transverse quadrupole misalignments as for protons
On-momentum particle launched along CO, coherent strength part $<10^{-6}$

0.1 Tm solenoid, on-momentum particle with 1 cm offsets in x and y