CLAS12 Offline Software Tools

G.Gavalian (Jlab)
CLAS Collaboration Meeting (June 15, 2016)
Overview

- **Data Formats:**
 - RAW data decoding from EVIO.
 - Reconstruction output banks in EVIO.
 - Reconstruction output convertor to ROOT (coming soon).
 - Data preservation format (HIPO), compression and fast random access.
 - Fast indexing and error recovery
 - Used to produce small data samples (and DSTSs)

- **Calibration Framework:**
 - Powerful 2D detector visualization framework.
 - Data analysis library for plotting, fitting (most of the plots in presentations today).
 - Interface to constants database, and translation tables.
 - Pulse fitting toolkit (database aware).
 - Automated calibration constants visualization and analysis.

- **Reconstruction:**
 - Modular reconstruction framework (CLARA based)
 - Event Builder for full event reconstruction
 - ROOT convertor for particle ID and physics analysis
Data Input/Output

✓ **Raw DAQ Data**
 - standard CCDB tables for pulse parameters (NSA, NSB, TET).
 - standard tables for Translation Tables (CCDB).
 - tools for reading FADC tables and Translation tables.
 - visualization and constrain highlighting.
 - simple interface to interact with data (independent of the source)

✓ **Raw Detector Pulse viewer**
 - interface for pulse FADC visualization
 - fitting for FADC pulse (integration)

✓ **Event Decoder**
 - decoder for compact data structures
 - pedestal subtraction/pulse fitter
 - creating reconstruction detector banks
Geometry & Calibration Tools

✓ **Standard Detector Geometry Package Implements:**
 - Forward Time of Flight
 - Electromagnetic Calorimeter
 - Forward Tagger
 - Drift Chambers
 - Silicon Vertex Tracker
 - Central Neutron Detector

✓ **Geometry Tools and Utilities:**
 - Drawing package for 2D detector representation
 - 3D shapes for CED-3D viewer
 - Detector component tracker for Fast Monte-Carlo

✓ **Calibration UI:**
 - new UI for developing Calibration code
 - data stream implementation for EVIO files and ET-ring
 - reasonable drawing and fitting package
Geometry 3D in CED
Calibration Examples (SVT)
Calibration Examples (SVT) (Y. Gotra)
CND Calibration (G. Murdoch)
FTOF Calibration (L. Clark)

Work completed / in progress
- Conversion of calibration algorithms to COATJAVA framework for high voltage, attenuation length, effective velocity, timewalk, paddle to paddle offsets
- Script generation for high voltage adjustments
- Output file of calibration constants for transfer to calibration database
- Summary graphs of calibration values
- FTOF calibration GUI

Work planned
- Conversion of calibration algorithms for RF offsets and counter status
- Full functionality within GUI for each calibration area
- Testing
Data Visualization (EC) (C. Smith)

Current Features
- Common framework for PCAL and EC.
- Pixels dynamically generated from geometry database.
- Mouse-over navigation of detector elements.
- Live updating of detector response and calibration results.

Monitoring
- Occupancy: strips, pixels, fADC and TDC data.
- fADC data: pulse shape, noise, fitter settings.
- Single event: visualize hits and showers.
- Pedestals: event-by-event, noisy channels.

Calibration
- GUI isolates single pixel cosmic muon hits (Dalitz).
- Optimization of pixel selection (statistics, geometry).
- Fits to pixel data: PMT gains and light attenuation.
- Validation using GEMC simulations.

Further Development
- Incorporate EPICS data (scalers and HV) for status monitoring.
- Energy cluster reconstruction and trigger debugging support.
- Energy calibration using physics data (e-, pi-zero and MIP pions).
- Timing calibration (offsets, time-walk).
- EC, PCAL relative alignment using cosmic muon pixel events.
Calibration EC
Calibration & Monitoring (FTCAL) (E. Fanchini)

- **Modular software:** project organized in subroutines (app) to be re-used
- **Runs:** online and offline data analysis
- **Selections:** Tabs and buttons to select analysis and variables to display
- **Comparison:** distributions compared with a reference or an offline run
- **Summary panel:** window displaying channel distributions and fits

- **Refit panel:** user function fit optimization
- **Outputs:** output files for offline analysis (txt, hipo)
Reconstruction CLARA 4.3

✓ **xMsg CLARA service bug**
 - general purpose public subscribe MPI
 - utilizes zeroMQ socket libraries
 - Sockets that carry messages across various transports
 - In-process
 - Inter-process
 - TCP
 - Multicast
 - Sockets can be connected N-to-N with patterns
 - Fan-out
 - Pub-sub
 - Task distribution
 - Request-reply
 - Java, C++, Python bindings

✓ **Reconstruction Framework**
 - reconstruction framework reads GEMC generation parameters.
 - modular, runs as separate services.

✓ **CLARA 4.3**
 - CLARA switched from using cMsg to xMsg (version 4)
 - easy transfer from 2.2 interface to 4.3
 - tests run on CLARADM machine show 250 Hz event reconstruction
COAT multinode test (EC, FTOF, DCHB, DCTB, EB) - CLARA 4.3 - quark cluster - 64 local files - 5k events

Event rate (kHz)

Number of nodes (12 cores per node)
ROOT (migration to comfort zone)

- output to ROOT tree
- flat NT10 structures
- includes generated particles
- reconstructed particles
- combined detector responses

- git clone https://github.com/gavalian/evioRoot
- cd evioRoot
- scons
- ./bin/evio2root badfile.evio goodfile.root
Particle Index

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>status</td>
<td>100</td>
</tr>
<tr>
<td>charge</td>
<td>1</td>
</tr>
<tr>
<td>pid</td>
<td>0</td>
</tr>
<tr>
<td>chi2pid</td>
<td>0</td>
</tr>
<tr>
<td>mass</td>
<td>0</td>
</tr>
<tr>
<td>beta</td>
<td>0</td>
</tr>
<tr>
<td>px</td>
<td>0</td>
</tr>
<tr>
<td>py</td>
<td>0</td>
</tr>
<tr>
<td>pz</td>
<td>0</td>
</tr>
<tr>
<td>vx</td>
<td>0</td>
</tr>
<tr>
<td>vy</td>
<td>0</td>
</tr>
<tr>
<td>vz</td>
<td>0</td>
</tr>
</tbody>
</table>

EC

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>0</td>
</tr>
<tr>
<td>detector</td>
<td>16</td>
</tr>
<tr>
<td>sector</td>
<td>2</td>
</tr>
<tr>
<td>superlayer</td>
<td>0</td>
</tr>
<tr>
<td>layer</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>39.47684</td>
</tr>
<tr>
<td>Y</td>
<td>318.21198</td>
</tr>
<tr>
<td>Z</td>
<td>634.41272</td>
</tr>
<tr>
<td>hX</td>
<td>39.47684</td>
</tr>
<tr>
<td>hY</td>
<td>318.21198</td>
</tr>
<tr>
<td>hZ</td>
<td>634.41272</td>
</tr>
<tr>
<td>path</td>
<td>710.84229</td>
</tr>
<tr>
<td>time</td>
<td>0.00000</td>
</tr>
<tr>
<td>energy</td>
<td>0.04108</td>
</tr>
</tbody>
</table>

FTOF

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>1</td>
</tr>
<tr>
<td>detector</td>
<td>17</td>
</tr>
<tr>
<td>sector</td>
<td>4</td>
</tr>
<tr>
<td>superlayer</td>
<td>0</td>
</tr>
<tr>
<td>layer</td>
<td>1</td>
</tr>
<tr>
<td>X</td>
<td>39.47684</td>
</tr>
<tr>
<td>Y</td>
<td>318.21198</td>
</tr>
<tr>
<td>Z</td>
<td>634.41272</td>
</tr>
<tr>
<td>hX</td>
<td>39.47684</td>
</tr>
<tr>
<td>hY</td>
<td>318.21198</td>
</tr>
<tr>
<td>hZ</td>
<td>634.41272</td>
</tr>
<tr>
<td>path</td>
<td>710.84229</td>
</tr>
<tr>
<td>time</td>
<td>0.00000</td>
</tr>
<tr>
<td>energy</td>
<td>0.04108</td>
</tr>
</tbody>
</table>

CLAS Collaboration Meeting (June 15, 2016)
Live Demo
Summary

• **Calibration:**
 • Unified framework for calibration seems to work for everyone.
 • All detector systems are using unified tools (visualization and analysis).
 • More work has to be done to unify data analysis

• **Data Formats and preservation.**
 • Transition to reading translation tables from DB is underway.
 • ADC pulse parameters are being read from database.
 • Raw bank decoders implemented for all detectors.
 • Transitional data structures are implemented (HIPO) for data compression.
 • Work is being done to optimize bank structures to save space.

• **Reconstruction:**
 • Reconstruction release 2.4 is ready to use.
 • Includes all detectors (Forward, Central and FTCAL)
 • CLARA Sand-Box available for CLAS12 reconstruction

• **Future Developments:**
 • Conversion from EVIO to ROOT for final reconstruction files.
Analysis Software Framework