CLAS12 Software Release

Veronique Ziegler

First Experiment Workshop
Coatjava-2.4 Available Services

Central Tracking: new reconstruction package for combined system 4 double-layers SVT + 1 double-layer BMT.
- CVT → helical tracks reconstruction
- CVTCosmics → straight tracks (cosmics) reconstruction

Forward Tracking: improved noise rejection and segment finding algorithms.
- DCHB → hit-based tracking
- DCTB → time-based tracking ➔ track parameters used for matching to FTOF & EB

PID: HTCC reconstruction included in full reconstruction chain (e- ID). Clustering and timing validated on MC. Improved GEMC simulation of HTCC mirror reflectance.
- HTCC → runs HTCC reconstruction

PID: TOFs: new reconstruction package for combined system CTOF+FTOF. Calibration constants from database.
- FTOFRec → FTOF reconstruction (hits & clusters [only hit info used in EB])
- CTOFRec → CTOF reconstruction

PID: EC/PCAL: implementation of attenuation correction. MC parameters tuned to match calibration data. Calibration constants from database.
- ECREC → runs EC and PCAL reconstruction

PID: FT: FT-Calorimeter & FT-Hodoscope services available for low angle γ & e- reconstruction. Improved clustering algorithms.
- FTCAL → Forward Tagger calorimeter reconstruction
- FTHODO → Forward Tagger hodoscope reconstruction
- FTMATCH → Forward Tagger matching between CAL and HODO

Event Builder: links services together, uses detector responses and tracking information to assign PID
- EB → runs the event builder (added at the end of the service chain by default)
TOF Software Update

• Reconstruction code (Java) written for combined system CTOF+FTOF
• Algorithms based on status word describing hit TDC and ADC values \([1: \text{OK}, \ 0: \text{not OK}, \ \text{i.e. FTOF word} = \text{ADCL_stat TDCL_stat ADCR_stat TDCR_stat}]\)
 – Done on a case by case basis \(\rightarrow\) order of steps matters
 • missing ADCL,R - missing TDCL,R, missing one ADC & one TDC \(\rightarrow\) requires tracking info
• Clustering and panel 1a,1b matching
 – corrected time using combined panel information (better than 1b alone)
• Ongoing development
 – Code being validated on GEMC (recon & simulation reads the same constants from ccdb)
 – Hit reconstruction validation ongoing for FTOF; just started for CTOF
 • Use of cluster information for timing resolution improvement being studied and validated
 – MC parameters tuned to match calibration data
• Timeline for project completion: end of August 2016
FTOF Reconstruction Validation

E. Golovach (Moskow U)

FTOF hit time (T), hit position along the scintillator paddle (X) and deposited energy (E) are reconstructed within the accuracy determined by the truncation of the digitized ADC and TDC, if no smearing in GEMC is applied.

- Good agreement between simulation and reconstructed data
- Energy correspondingly good
- Algorithm for clusterization being developed and validated
 - combine timing from panel 1a and 1b to give better hit time resolution

* systematic shift due to digitization
EC+ PCAL Reconstruction Validation

6 GeV photon simulated with GEMC

~90% efficiency from 1 to 6 GeV

J. Newton (ODU)

- Good agreement between simulation and reconstructed data for EC & PCAL
 - geometry agreement between GEMC and reconstructed validated for EC

Sampling fraction as a function of energy
(units = mrad)
Event Builder: Neutrals Reconstruction

Two Photon Mass

e p → e p π^0 sample

M (YY) [GeV]
Event Builder: FTOF Matching

e^− p K^+ π^- sample

negative tracks

positive tracks

Δx (cm) Δy (cm) Δz (cm)
Event Builder: PID

\[e \ p \ K^+ \, \pi^- \] sample

Reconstructed masses

Particle Mass (GeV)

Particle Beta

Vertex Z

\[\beta \]
Event Monitoring: Tracking Resolutions

negative tracks

positive tracks

e p K⁺ π⁻ sample
New “Projected Drift Chambers” view. Instead of the entire detector projected onto a constant ϕ plane, each superlayer is projected onto a plane perpendicular to its wires. This reduces distortion and makes visualization of tracks and segments wrt DOCAs more accurate and, consequently, more useful.

You can now choose “Lund Files” as the source of events. ced will read the file and swim the particles. It will then ask coatjava libraries to determine what was hit, and then it will display the hits.

Over the next month, we will use the DC hits to build a dictionary and (independently) to train a neural net. We will then test the resolution and speed of using these machine-learning products as 0th pass track fitters.
Features, fixes and improvements

- use drupal forum to report issues
 - works like hypernews: searchable
 - https://clasweb.jlab.org/drupal/forum