Heavy-quarkonium theory in the LHC era

Bernd Kniehl
II. Institut für Theoretische Physik, Universität Hamburg

7th Workshop of the APS Topical Group on Hadronic Physics
Washington DC, 1–3 February 2017

In collaboration with Mathias Butenschön and Zhiguo He
PRL 104 (2010) 072001
PRL 106 (2011) 022003
PRD 84 (2011) 051501 (Rapid Communications)
PRL 107 (2011) 232001
PRL 108 (2012) 172002
MPLA 28 (2013) 1350027 (Brief Reviews)
PRL 114 (2015) 092004
PRL 115 (2015) 022002
Outline

1. Introduction: CEM, CSM, NRQCD factorization
2. NLO NRQCD: General concept, singularities
3. Global fit: Unpolarized J/ψ yield
4. Further tests: ATLAS, FTPS, ZEUS
5. Polarization: HERA, Tevatron, LHC
6. η_c yield: LHC
7. Summary: NRQCD at the crossroads
Introduction: CEM, CSM, NRQCD factorization

Color evaporation model [Fritzsch 77; Halzen 77; Glück Owens Reya 78]

\[\sigma_{J/\psi} \approx \frac{1}{9} \rho_{J/\psi} \int_{2m_c}^{2m_D} ds c\bar{c} \frac{d\sigma_{c\bar{c}}}{ds c\bar{c}} \]

- **1/9**: statistical probability that \(3\times\bar{3}\) \(c\bar{c}\) pair is asymptotically in color-single state
- **\(\rho_{J/\psi}\)**: fraction of charmonia that materialize as \(J/\psi\)
- Based local parton-hadron duality
- Assumes soft-gluon exchange with underlying event
- **\(2S+1 L^c_J\)** quantum numbers do not enter
- Useful qualitative picture, rather than rigorous theory

[Schuler Vogt 96; Vogt 99; Frawley Ullrich Vogt 08]

~ Talk by Vincent Cheung.
Color-singlet model vs. NRQCD factorization

Color-singlet model [Berger Jones 81; Baier Rückl 81]
- $c\bar{c}$ pair in physical color-singlet state, e.g. $c\bar{c}[^3S_1]$ for J/ψ.
- Nonperturbative information in J/ψ wave function at origin.
- Leftover IR divergences for P-wave quarkonia \sim inconsistent!
- Predicted cross section factor 10^1–10^2 below Tevatron data.

NRQCD factorization [Bodwin Braaten Lepage 95]
- Rigorous effective field theory.
- Based on factorization of soft and hard scales
 (Scale hierarchy: $Mv^2 \lesssim \Lambda_{\text{QCD}} \ll Mv \ll M$).
- Theoretically consistent: no leftover singularities.
- Proof of factorization [Nayak Qiu Sterman 05; Nayak 15].
- Can explain unpolarized yield at Tevatron and elsewhere.
NRQCD factorization in a nutshell

Factorization theorem \(\sigma_{J/\psi} = \sum_n \sigma_{c\bar{c}[n]} \cdot \langle O_{J/\psi}^n \rangle \)

- \(n \): every possible Fock state, including color-octet states.
- \(\sigma_{c\bar{c}[n]} \): production rate of \(c\bar{c}[n] \), calculated in perturbative QCD.
- \(\langle O_{J/\psi}^n \rangle \): long-distance matrix elements (LDMEs), nonperturbative, extracted from experiment, universal?

Scaling rules [Lepage Magnea\(^2\) Nakhle Hornbostel 92]
LDMEs scale with relative velocity \(v \) (\(v^2 \approx 0.2 \)).

<table>
<thead>
<tr>
<th>scaling</th>
<th>(v^3) (CS state)</th>
<th>(v^7) (CO states)</th>
<th>(v^{11})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>(3S_1^{[1]})</td>
<td>(1S_0^{[8]}, 3S_1^{[8]}, 3P_0^{[8]})</td>
<td>(0/1/2)</td>
</tr>
</tbody>
</table>

- **Double expansion** in \(v \) and \(\alpha_s \).
- **Leading term** in \(v \) (\(n = 3S_1^{[1]} \)) corresponds to **color-singlet model**.
NLO NRQCD calculations

- Petrelli Cacciari Greco Maltoni Mangano 98:
 Photo- and hadroproduction (only $2 \rightarrow 1$ processes)

- Klasen BK Mihaila Steinhauser 05:
 Two-photon scattering (w/o resolved photons)

- Butenschön BK 09:
 Photoproduction (w/o resolved photons)

- Zhang Ma Wang Chao 10:
 $e^+ e^-$ annihilation

- Ma Wang Chao 10, Butenschön BK 10:
 Hadroproduction

- Butenschön BK 11:
 γp and $\gamma \gamma$ (resolved photons) \sim global fit of CO LDMEs

- Butenschön BK 11:
 Polarization in photoproduction

- Butenschön BK 12, Chao Ma K. Wang Y.-J. Zhang 12, Gong, Wan, J.-X. Wang, H.-F. Zhang 12, Shao, Ma, K. Wang, Chao 14:
 Polarization in hadroproduction
Sample diagrams for J/ψ photoproduction in NRQCD

(a) \[\gamma \rightarrow c \bar{c} \]

(b) \[\gamma \rightarrow c g c\]

(c) \[\gamma \rightarrow c c g\]

(d) \[\gamma \rightarrow q g q\]

(e) \[\gamma \rightarrow q g q\]

(f) \[\gamma \rightarrow q g q\]
Amplitudes for $c\bar{c}[n]$ production by projector application:

\[
A_{c\bar{c}[1S_0^8]} = \text{Tr} \left[C_8 \Pi_0 A_{c\bar{c}} \right] |_{q=0}
\]
\[
A_{c\bar{c}[3S_1^{1/8}]} = \epsilon_\alpha \text{Tr} \left[C_{1/8} \Pi^\alpha A_{c\bar{c}} \right] |_{q=0}
\]
\[
A_{c\bar{c}[3P_J^{8}]} = \epsilon_{\alpha\beta} \frac{d}{dq_\beta} \text{Tr} \left[C_8 \Pi^\alpha A_{c\bar{c}} \right] |_{q=0}
\]

- $A_{c\bar{c}}$: amputated pQCD amplitude for open $c\bar{c}$ production.
- q: relative momentum between c and \bar{c}.
- $C_{1/8}$: color projectors
- $\Pi_{0/1}$: spin projectors
- ϵ: polarization vectors and tensors
Main Difference to Previous Calculations

Virtual corrections: Two different approaches:

- First loop integration, then projectors: (Previous publications)
 - Loop integrals **Coulomb divergent**.
- First projectors, then loop integration: (Our method)
 + No Coulomb singularities.
 + One scale less in loop integration.
 - Loop integrals not standard form.

Where do Coulomb divergences come from?

- Projectors: Relative momentum \(q \to 0 \).
- Scalar diagrams with gluon between external \(c \) and \(\bar{c} \), e.g.:

\[
I(q) \equiv \lim_{q \to 0} \frac{P/2+q}{c} = \frac{A}{q^2} + \frac{B}{\epsilon} + C \\
\text{But: } I(0) = \frac{B}{\epsilon} + C
\]

\[\implies \text{No Coulomb singularities in dimensional regularization!} \]
Cancellation of divergences

UV divergences: Cancellation within virtual corrections:
- Loop integrals
- Charm mass renormalization
- Strong coupling constant renormalization
- Wave function renormalization of external particles

IR divergences: Cancellation between:
- Virtual corrections (loop integrals + wave function renormal.)
- Soft and collinear parts of real corrections
- Universal part absorbed into proton and photon PDFs
- Radiative corrections to long distance matrix elements
Overview of IR singularity structure
Structure of Soft Singularities

Soft limits of the real corrections:

\[P/2 + q \rightarrow P/2 - q \rightarrow k_4 \rightarrow 0 \]
\[k_4 \text{ soft} \]

\[A_{\text{soft}}(q) = A_{\text{Born}}(q) \cdot E(q) \]

S and P states: Soft #1 + Soft #2 + Soft #3 terms:

\[A_{\text{soft},s} = A_{\text{soft}}(0) = A_{\text{Born},s} \cdot E(0) \]
\[A_{\text{soft},p} = A'_{\text{soft}}(0) = A_{\text{Born},p} \cdot E(0) + A_{\text{Born},s} \cdot E'(0) \]

\[|A_{\text{soft},s}|^2 = |A_{\text{Born},s}|^2 \cdot E(0)^2 \]
\[|A_{\text{soft},p}|^2 = |A_{\text{Born},p}|^2 \cdot E(0)^2 + 2 \text{ Re } A_{\text{Born},s}^* A_{\text{Born},p} \cdot E(0) E'(0) \]
\[+ |A_{\text{Born},s}|^2 \cdot E'(0)^2 \]
Radiative Corrections to Long Distance MEs

In NRQCD: Long distance MEs = $c\bar{c}$ scattering amplitudes:

$$\langle O^{J/\psi}[n] \rangle = \begin{pmatrix} c \\ \bar{c} \end{pmatrix} \begin{pmatrix} c \\ \bar{c} \end{pmatrix} \begin{pmatrix} O[n] \end{pmatrix}$$

$O[n] = 4$-fermion operators

$(n = 3S_1, 1S_0, 3S_1, 3P_0/1/2, \ldots)$

Corrections to $\langle O^{J/\psi}[3S_1^{1/8}] \rangle$ with NRQCD Feynman rules:

$$\begin{pmatrix} c \\ \bar{c} \end{pmatrix} \begin{pmatrix} c \\ \bar{c} \end{pmatrix} \begin{pmatrix} 3S_1 \end{pmatrix} + \text{similar diagrams} \propto \frac{4\alpha_s}{3\pi m_c^2} \left(\frac{1}{\epsilon_{\text{UV}}} - \frac{1}{\epsilon_{\text{IR}}} \right) \begin{pmatrix} c \\ \bar{c} \end{pmatrix} \begin{pmatrix} 3P_0 + 3P_1 + 3P_2 \end{pmatrix}$$

- UV singularity cancelled by renormalization of 4-fermion operat.
- IR singularity cancels soft #3 terms of P states!
Global fit at NLO in NRQCD

<table>
<thead>
<tr>
<th>Fit</th>
<th>CO LDMEs to all available world data on J/ψ inclusive production:</th>
</tr>
</thead>
<tbody>
<tr>
<td>type</td>
<td>\sqrt{s}</td>
</tr>
<tr>
<td>pp</td>
<td>200 GeV</td>
</tr>
<tr>
<td>$\bar{p}p$</td>
<td>1.8 TeV</td>
</tr>
<tr>
<td>$p\bar{p}$</td>
<td>1.96 TeV</td>
</tr>
<tr>
<td>pp</td>
<td>7 TeV</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>γp</td>
<td>319 GeV</td>
</tr>
<tr>
<td>$\gamma\gamma$</td>
<td>197 GeV</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>10.6 GeV</td>
</tr>
</tbody>
</table>

Fit values for CO LDMEs:

- $10^{-2} \text{ GeV}^{3+2L}$ feed-down included
- $10^{-2} \text{ GeV}^{3+2L}$ feed-down subtracted

- $\langle O^{[1S_0]} \rangle = 4.97 \pm 0.44 \rightarrow 3.04 \pm 0.35$
- $\langle O^{[3S_1]} \rangle = 0.224 \pm 0.059 \rightarrow 0.168 \pm 0.046$
- $\langle O^{[3P_0]} \rangle = -1.61 \pm 0.20 \rightarrow -0.908 \pm 0.161$
- $\chi^2 / \text{d.o.f.} = 857/194 = 4.42 \rightarrow 725/194 = 3.74$

Note: CO LDMEs $\propto \sqrt{s} \times \langle O^{[3S_1]} \rangle \rightarrow$ NRQCD velocity scaling rules \checkmark
Comparison with world data

Heavy-quarkonium theory in the LHC era

Bernd Kniehl
Comparison with RHIC and Tevatron

- **RHIC PHENIX**
 - PHENIX data
 - CS, LO
 - CS, NLO
 - CS+CO, LO
 - CS+CO, NLO

- **Tevatron II CDF**
 - CDF data: Run 2
 - CS, LO
 - CS, NLO
 - CS+CO, LO
 - CS+CO, NLO

- **Decomposition of NLO NRQCD**
 - CDF data
 - $3S_J^{[1]}$, NLO
 - $1S_J^{[1]}$, NLO
 - $3S_J^{[8]}$, NLO
 - $3P_J^{[8]}$, NLO
 - $3P_J^{[8]}$, NLO
 - Total, NLO

- **Data** well described by CS+CO at NLO.
- **CS** orders of magnitudes below data.
- Sizeable NLO corrections, especially in the $3P_J^{[8]}$ channels.
Comparison with ATLAS and CMS at LHC
Comparison with ALICE and LHCb at LHC

Comparison with ALICE and LHCb at LHC
Comparison with ZEUS at HERA I

- **$W = \gamma p$** CM energy.
- **z** = fraction of γ energy going to J/ψ in p rest frame.
- Compensation of $^{1}\Sigma_0^{[8]}$ vs. $^{3}P_j^{[8]} \rightsquigarrow$ regular $z \rightarrow 1$ behavior.
- Data well described by CS+CO at NLO.
- CS factor of 3–5 below the data.
Comparison with H1 at HERA I and II

Heavy-quarkonium theory in the LHC era

Bernd Kniehl
Comparison with DELPHI at LEP II

- Agreement with NRQCD at NLO worse than in 2002 at LO.
- Just 16 DELPHI events with $p_T > 1$ GeV.
- No results from ALEPH, L3, OPAL.
- Data exhausted by single-resolved contribution.

[Klasen BK Mihaila Steinhauser 02]
Comparison with Belle at KEKB

- At NLO, both CSM and NRQCD agree with data.
- # of charged tracks > 4, missing events not corrected for.
 \sim Belle point likely higher.
Comparison with ATLAS (after fit) [NPB850(2011)387]

- Resummation of large logs $\ln(p_T^2/M^2)$ necessary at large p_T.
- New formalism to include non-leading powers in p_T^2/M^2 [Kang Qiu Sterman 2012].
Comparison with Fermilab Tagged-Photon Spectrometer data (excluded from fit) \[\text{[PRL52(1984)795]}\]

- **Inelastic scattering of 105 GeV photons on hydrogen target.**
- **Data remarkably well described** by CS+CO at NLO.
Comparison with ZEUS (after fit) [JHEP1302(2013)071]

- Notorious NRQCD overshoot at large z overcome.
Decay angular distribution:
\[
\frac{d\Gamma(J/\psi \rightarrow l^+ l^-)}{d\cos\theta \, d\phi} \propto 1 + \lambda_\theta \cos^2\theta + \lambda_\phi \sin^2\theta \cos(2\phi) + \lambda_\theta\phi \sin(2\theta)\cos\phi
\]

Polarization observables in spin density matrix formalism:
\[
\lambda_\theta = \frac{d\sigma_{11} - d\sigma_{00}}{d\sigma_{11} + d\sigma_{00}}, \quad \lambda_\phi = \frac{d\sigma_{1,-1} - d\sigma_{-1,1}}{d\sigma_{11} + d\sigma_{00}}, \quad \lambda_\theta\phi = \sqrt{2}\text{Re} \frac{d\sigma_{10}}{d\sigma_{11} + d\sigma_{00}}
\]
\[
\lambda = 0, \pm 1, -1: \text{unpolarized, transversely and longitudinally polarized.}
\]
Comparison with H1 and ZEUS

- H1 data
 - Helicity frame
 - CS, LO
 - CS, NLO
 - CS+CO, LO
 - CS+CO, NLO
 - Collins-Soper frame
 - CS, LO
 - CS, NLO
 - CS+CO, LO
 - CS+CO, NLO

- ZEUS data (till z=1)
 - Target frame
 - CS, LO
 - CS, NLO
 - CS+CO, LO
 - CS+CO, NLO

No z cut on ZEUS data \sim diffractive production included.
- Perturbative stability in NRQCD higher than in CSM.
- J/ψ preferably unpolarized at large p_T.
Comparison with CDF and ALICE

- CDF J/ψ polarization anomaly persists at NLO.
- 4/8 ALICE [PRL108 (2012) 082001] points agree w/ NLO NRQCD within errors, others $< 2\sigma$ away.

- ALICE and LHCb data mutually agree.
- NLO NRQCD predictions systematically disagree w/ data.
Comparison with CMS data on prompt J/ψ and ψ' polarization [PLB727(2013)381]

- NLO NRQCD predictions systematically disagree w/ data on λ_θ.

Heavy-quarkonium theory in the LHC era

Bernd Kniehl
Comparison with Gong et al. and Chao et al.

e^+e^- yield

- BK, MB
 - PRL108(2012)172002

- Gong et al.
 - PRL110(2013)042002

- Chao et al.
 - PRL108(2012)242004

γp yield

- BK, MB
 - PRL108(2012)242004

- Gong et al.
 - PRL110(2013)042002

- Chao et al.
 - PRL108(2012)242004

p+p/pp yield

- BK, MB
 - PRL108(2012)172002

- Gong et al.
 - PRL110(2013)042002

- Chao et al.
 - PRL108(2012)242004

CDF polariz.

- BK, MB
 - PRL108(2012)172002

- Gong et al.
 - PRL110(2013)042002

- Chao et al.
 - PRL108(2012)242004

Heavy-quarkonium theory in the LHC era

Bernd Kniehl
LHCb data on η_c yield [EPJC75(2015)311]

M. Butenschoen, Z. He, BK, PRL114(2015)092004
NRQCD factorization provides rigorous framework for production and decay of heavy quarkonia; predicts:
- existence of CO states;
- universality of LDMEs.
NLO NRQCD nicely describes world data on unpolarized J/ψ yield.
NLO CSM greatly undershoots data, except for e^+e^- annihilation.
$\gamma\gamma$ scattering not conclusive yet.
Hadroproduction data alone cannot reliably fix all 3 CO LDMEs.
NLO NRQCD predictions for polarized J/ψ hadroproduction based on global analysis of J/ψ yield agrees with ALICE (low p_T), but strongly disagrees with CDF, CMS, and LHCb.
NLO NRQCD predictions for η_c yield based on heavy-quark spin symmetry greatly overshoot LHCb data.
NRQCD factorization remains among the hottest topics of QCD @ LHC.