Recent results on QCD thermodynamics from lattice

Sayantan Sharma

February 1, 2017
Outline

1. The QCD phase diagram: outstanding issues
2. Symmetries
3. Degrees of freedom in QCD
4. Realistic modelling of the heavy ion experiments and lattice
The QCD phase diagram: outstanding issues

- Understanding QCD phase diagram is one of the most challenging problems in the recent years.
- The underlying physics of confinement and chiral symmetry breaking is not yet completely understood.

 [Schaefer and Shuryak, 96]
- Challenges bring in new opportunities!
- Major new insights from Lattice QCD in last two years.
- It is also important in view of the BESII program at RHIC in 2019-2020.
The main topics addressed in this talk

- Symmetries and order parameter.
The main topics addressed in this talk

- Symmetries and order parameter.
- Degrees of freedom characterizing different phases
The main topics addressed in this talk

- Symmetries and order parameter.
- Degrees of freedom characterizing different phases
- How do we observe any hints of QCD thermodynamics from the rich set of experimental data from the heavy-ion colliders.
The main topics addressed in this talk

- Symmetries and order parameter.
- Degrees of freedom characterizing different phases
- How do we observe any hints of QCD thermodynamics from the rich set of experimental data from the heavy-ion colliders.
 - QCD thermodynamics at finite density.
The main topics addressed in this talk

- Symmetries and order parameter.
- Degrees of freedom characterizing different phases
- How do we observe any hints of QCD thermodynamics from the rich set of experimental data from the heavy-ion colliders.
 - QCD thermodynamics at finite density.
 - Understanding freezeout conditions in HIC.
The main topics addressed in this talk

- Symmetries and order parameter.
- Degrees of freedom characterizing different phases
- How do we observe any hints of QCD thermodynamics from the rich set of experimental data from the heavy-ion colliders.
 - QCD thermodynamics at finite density.
 - Understanding freezeout conditions in HIC.

- The exciting news about developments in heavy quark potentials and color screening would be covered in the following talks:
1. The QCD phase diagram: outstanding issues
2. Symmetries
3. Degrees of freedom in QCD
4. Realistic modelling of the heavy ion experiments and lattice
The phase diagram at $\mu_B = 0$

- For finite quark masses, no unique order parameter.
- It is now well established that $\mu_B = 0$ chiral symmetry restoration occurs via crossover transition with a $T_c = 154(9)$ MeV.
 [Budapest-Wuppertal collaboration, 1309.5258, HotQCD collaboration, Bazavov et. al, 1407.6387]
- The EoS for $2 + 1$ QCD is measured in the continuum and different lattice groups agree.[See Alexie Bazavov’s talk, Wed 11:25AM].
- The dynamical effects of charm quarks included till 1 GeV → important as degrees of freedom and EoS during cosmological evolution.
 [Borsanyi et. al, 1606.07494]
The phase diagram at $\mu_B = 0$

- However since $m_u, m_d \ll \Lambda_{QCD}$ there is an approximate $U_L(2) \times U_R(2)$ symmetry of QCD Lagrangian.

- $U_L(2) \times U_R(2) \rightarrow SU(2)_V \times SU(2)_A \times U_B(1) \times U_A(1)$

- At chiral crossover transition:
 $SU(2)_V \times SU(2)_A \times U_B(1) \rightarrow SU(2)_V \times U_B(1)$.

- Is $U_A(1)$ effectively restored at T_c? → can change the universality class of the second order phase transition at $\mu_B = 0$.

 Either $O(4)$ or $U_L(2) \times U_R(2)/U_V(2)$

 [Pisarski & Wilczek, 84, Butti, Pelissetto & Vicari, 03, 13, Nakayama & Ohtsuki, 15]
The phase diagram at $\mu_B = 0$

- Not an exact symmetry \rightarrow what observables to look for? Degeneracy of the 2-point correlators [Shuryak, 94] \rightarrow higher point correlation functions imp.

$$\chi_\pi - \chi_\delta \overset{\nu \rightarrow \infty}{\rightarrow} \int_0^\infty d\lambda \frac{4 m_f^2 \rho(\lambda, m_f)}{\lambda^2 + m_f^2}$$

- Observables non-analyticities + analytic part of the eigenvalue spectrum.

[Aoki, Fukaya & Taniguchi, 1209.2061, HotQCD collaboration, 1205.3535, V. Dick et. al. 1502.06190]

- Independent hints from study of screening masses (excitations) for π, η.

[Y. Maezawa et. al. 1411.3018, B. Brandt et. al. 1608.06882]

- Non-analytic part still needs careful study. Analytic part of the spectrum strongly suggest that $U_A(1)$ is broken!

[V. Dick, et. al, 1602.02197]
Near-zero modes of QCD Dirac operator at $1.5 \ T_c$ due to a weakly interacting instanton-antiinstanton pair!
Microscopic origin of $U_A(1)$ breaking?

- Near-zero modes of QCD Dirac operator at $1.5 \, T_c$ due to a weakly interacting instanton-antiinstanton pair!
- The density $\approx 0.147(7)\, fm^{-4}$. This is much more dilute than an instanton liquid with density $1\, fm^{-4}$.

[V. Dick, F. Karsch, E. Laermann, S. Mukherjee and S.S, 1502.06190]
Independent confirmation: Topological susceptibility

- Topological susceptibility measurement at high T on the lattice suffers from rare topological tunneling, lattice artifacts.
- Going towards continuum limit difficult due to freezing of topology.
- New fermionic observables developed to crosscheck the standard definition of $\chi_t = \int d^4x \langle \tilde{F}(x)F(0) \rangle$. [P. Petreczky, H-P Schadler, SS, 1606.03145].
- Continuum extrapolated results now available for QCD!
Independent confirmation: Topological susceptibility

- Fit ansatz: $\chi_t^{1/4} = AT^{-b}$.
- $b = 0.9 - 1.2$ for $T < 250$ MeV. Agrees well with [Bonati et. al, 1512.06746]
- $T > 300$ MeV: Continuum extrapolated $b = 1.85(15)$ in agreement with dilute instanton gas.
 confirmed also in an independent study with improved topological tunneling techniques at high temperatures [Borsanyi et. al, 1606.07494]

- Dilute gas prediction: $b = 4 - \frac{11N_c}{3} - \frac{2N_f}{3}$.
Lattice QCD studies can now address long standing problem on anomalous $U_A(1)$ symmetry and it’s fate near chiral crossover transition.
Summary till now

- Lattice QCD studies can now address long standing problem on anomalous $U_A(1)$ symmetry and it’s fate near chiral crossover transition.
- Most lattice studies hint that $U_A(1)$ is broken significantly near and even beyond T_c.
Lattice QCD studies can now address long standing problem on anomalous $U_A(1)$ symmetry and it’s fate near chiral crossover transition.

Most lattice studies hint that $U_A(1)$ is broken significantly near and even beyond T_c.

Underlying microscopic origin is being studied in quite detail. → hints to interplay between topology in QCD and chiral phase transition as suggested from studies by Shuryak and his collaborators

[Shuryak, 82, Ilgenfritz & Shuryak, 88, Shuryak and Schaefer, 96].
Lattice QCD studies can now address long standing problem on anomalous $U_A(1)$ symmetry and its fate near chiral crossover transition.

Most lattice studies hint that $U_A(1)$ is broken significantly near and even beyond T_c.

Underlying microscopic origin is being studied in quite detail. → hints to interplay between topology in QCD and chiral phase transition as suggested from studies by Shuryak and his collaborators [Shuryak, 82, Ilgenfritz & Shuryak, 88, Shuryak and Schaefer, 96].

Topological susceptibility has been measured in lattice QCD → suggests non-trivial top-fluctuations in hot QCD medium even at 1 GeV, consequences for axion cosmology.
Lattice QCD studies can now address long standing problem on anomalous $U_A(1)$ symmetry and it’s fate near chiral crossover transition.

Most lattice studies hint that $U_A(1)$ is broken significantly near and even beyond T_c.

Underlying microscopic origin is being studied in quite detail. → hints to interplay between topology in QCD and chiral phase transition as suggested from studies by Shuryak and his collaborators

[Shuryak, 82, Ilgenfritz & Shuryak, 88, Shuryak and Schaefer, 96].

Topological susceptibility has been measured in lattice QCD → suggests non-trivial top-fluctuations in hot QCD medium even at 1 GeV, consequences for axion cosmology.

Challenges Is is possible to understand the intricate connection between chiral symmetry breaking and confinement through a detailed study of the topological constituents of QCD near T_c? What are the topological constituents near T_c?
Outline

1. The QCD phase diagram: outstanding issues
2. Symmetries
3. Degrees of freedom in QCD
4. Realistic modelling of the heavy ion experiments and lattice
Basic observables: Fluctuations of conserved charges

- Correlations and fluctuations between different conserved quantum numbers like Baryon no, electric charge, strangeness give important information about nature of quasi-particles in different phases of QCD.
Basic observables: Fluctuations of conserved charges

- Correlations and fluctuations between different conserved quantum numbers like Baryon no, electric charge, strangeness give important information about nature of quasi-particles in different phases of QCD.

- Straightforward to calculate at $\mu_B, Q, S = 0$

$$
\chi_{ijk}^{BQS} = \frac{T}{V} \frac{\partial^{i+j+k} p}{\partial \mu^B_i \mu^Q_j \mu^S_k}
$$
Basic observables: Fluctuations of conserved charges

- Correlations and fluctuations between different conserved quantum numbers like Baryon no, electric charge, strangeness give important information about nature of quasi-particles in different phases of QCD.

- Straightforward to calculate at $\mu_B, Q, S = 0$

$$\chi_{i,j,k}^{BQS} = \frac{T}{V} \frac{\partial^{i+j+k} p}{\partial \mu_i^B \mu_j^Q \mu_k^S}$$

- Conventional Monte-Carlo algorithms at finite μ in Lattice QCD suffer from sign problem.
Basic observables: Fluctuations of conserved charges

- Correlations and fluctuations between different conserved quantum numbers like Baryon no, electric charge, strangeness give important information about nature of quasi-particles in different phases of QCD.
- Straightforward to calculate at $\mu_B, Q, S = 0$

$$\chi_{ijk}^{BQS} = \frac{T}{V} \frac{\partial^{i+j+k} p}{\partial \mu_i^B \mu_j^Q \mu_k^S}$$

- Conventional Monte-Carlo algorithms at finite μ in Lattice QCD suffer from sign problem.
- One of the methods to circumvent sign problem: Taylor expansion of physical observables around $\mu = 0$ in powers of μ/T

[Bielefeld-Swansea collaboration, 02]

$$\frac{P(\mu_B, T)}{T^4} = \frac{P(0, T)}{T^4} + \frac{1}{2} \left(\frac{\mu_B}{T} \right)^2 \chi_2^B(0, T) + \frac{1}{4!} \left(\frac{\mu_B}{T} \right)^4 \chi_4^B(0) + ...$$

Different orders of fluctuations appear as Taylor coefficients
Challenges for Lattice computations

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
The fluctuations of conserved charges can be expressed in terms of Quark number susceptibilities (QNS).

QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example:

$$\chi_{2}^{u} = \frac{T}{V} \langle Tr(D_{u}^{-1}D_{u}'' - (D_{u}^{-1}D_{u}')^2) + (Tr(D_{u}^{-1}D_{u}'))^2 \rangle.$$

$$\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_{u}^{-1}D_{u}'D_{s}^{-1}D_{s}') \rangle.$$
Challenges for Lattice computations

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

 Example: $\chi^u_2 = \frac{T}{V} \langle Tr(D^{-1}_u D''_u - (D^{-1}_u D'_u)^2) + (Tr(D^{-1}_u D'_u))^2 \rangle$.
 $\chi^{us}_{11} = \frac{T}{V} \langle Tr(D^{-1}_u D'_u D^{-1}_s D'_s) \rangle$.

- Higher derivatives \rightarrow more inversions

 Inversion is the most expensive step on the lattice!
The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).

QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

Example: $\chi^u_2 = \frac{T}{V} \langle Tr(D_u^{-1}D_u''' - (D_u^{-1}D_u')^2) + (Tr(D_u^{-1}D_u'))^2 \rangle$.

$\chi^{us}_{11} = \frac{T}{V} \langle Tr(D_u^{-1}D_u'D_s^{-1}D_s') \rangle$.

Higher derivatives \rightarrow more inversions

Inversion is the most expensive step on the lattice!

Why extending to higher orders so difficult?
Challenges for Lattice computations

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

 Example: $\chi^u_2 = \frac{T}{V} \langle Tr(D^{-1}_u D''_u - (D^{-1}_u D'_u)^2) + (Tr(D^{-1}_u D'_u))^2 \rangle$.
 $\chi^{us}_{11} = \frac{T}{V} \langle Tr(D^{-1}_u D'_u D^{-1}_s D'_s) \rangle$.

- Higher derivatives \rightarrow more inversions

 Inversion is the most expensive step on the lattice!

- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order
Challenges for Lattice computations

- The fluctuations of conserved charges can be expressed in terms of Quark no. susceptibilities (QNS).
- QNS χ_{ij}'s can be written as derivatives of the Dirac operator.

 Example:
 $$\chi_{2}^{u} = \frac{T}{V} \langle Tr(D_{u}^{-1}D_{u}'' - (D_{u}^{-1}D_{u}')^2) + (Tr(D_{u}^{-1}D_{u}'))^2 \rangle.$$
 $$\chi_{11}^{us} = \frac{T}{V} \langle Tr(D_{u}^{-1}D_{u}'D_{s}^{-1}D_{s}') \rangle.$$

- Higher derivatives \rightarrow more inversions
 Inversion is the most expensive step on the lattice!

- Why extending to higher orders so difficult?
 - Matrix inversions increasing with the order
 - Delicate cancellation between a large number of terms for higher order QNS.
Introducing μ such that it appears as a linear term multiplying the conserved number [Gavai & Sharma, 1406.0474] as in the continuum instead of conventional e^μ.

$$D(0)_{xy} - \frac{\mu a}{2} \eta_4(x) \left[U_4^\dagger(y) \delta_{x,y+\hat{4}} + U_4(x) \delta_{x,y-\hat{4}} \right].$$

No divergences exist for sixth order susceptibilities and beyond. [Gavai & Sharma, 1406.0474]

Number of inversions significantly reduced for 6th and higher orders. For 8th order QNS the no. of matrix inversions reduced from 20 to 8.

Calculate n_B in imaginary μ and extract higher order fluctuations. [See Szabolcs Borsanyi’s talk, Fri, 14:25 PM].

Current state of the art: 6th order fluctuations known with very good precision: [Gunther et. al, 1607.02493, D’Elia et. al., 1611.08285, Bielefeld-BNL-CCNU, 1701.04325]
Possible ways out

- Heavy-ion experiments at different collision energies sets non-trivial constraints: \(n_s = 0, \frac{n_B}{n_Q} \) = constant.
- Can be implemented easily within Taylor series method. [Bielefeld-BNL-CCNU, 1701.04325]. Also implemented in imaginary \(\mu \).
- \(\chi_B^6 \) has very distinct structure \(\rightarrow \) deviates from Hadron Resonance gas picture for \(T < T_c \). Weak coupling results cannot predict the dip at \(T > T_c \) \(\rightarrow \) signatures of a strongly coupled medium?

[Gunther et. al, 1607.02493, Bielefeld-BNL-CCNU, 1701.04325]
Can we understand degrees of freedom in hot QCD medium?

- Can the hot QCD medium be described in terms of quasi-particles?
Can we understand degrees of freedom in hot QCD medium?

- Can the hot QCD medium be described in terms of quasi-particles?
- Look at a simple system: correlation between charm and light quarks
Can the hot QCD medium be described in terms of quasi-particles?

Look at a simple system: correlation between charm and light quarks

Deviation from Hard Thermal Loop results between $160 - 200$ MeV.
Can we understand degrees of freedom in hot QCD medium?

- Can the hot QCD medium be described in terms of quasi-particles?
- Look at a simple system: correlation between charm and light quarks
- Deviation from Hard Thermal Loop results between $160 – 200$ MeV.
- Charm quarks not a good quasi-particle below 200 MeV? What happens after charm hadron melts at T_c. [Mukherjee, Petreczky, SS, 1509.08887.]
What are the microscopic constituents beyond T_c?
Model charm d.o.f in QCD medium as charm meson+baryon+quark-like excitations.

\[p_C(T, \mu_B, \mu_C) = p_M(T) \cosh \left(\frac{\mu_C}{T} \right) + p_{B,C=1}(T) \cosh \left(\frac{\mu_C + \mu_B}{T} \right) + p_q(T) \cosh \left(\frac{\mu_C + \mu_B/3}{T} \right). \]

Considering fluctuations upto 4th order there are 6 measurements and thus 2 trivial constraints $\chi_C^4 = \chi_C^2$, $\chi_{BC}^{11} = \chi_{BC}^{13}$.

A more non-trivial constraint:
\[c_1 \equiv \chi_{13}^{BC} - 4\chi_{22}^{BC} + 3\chi_{31}^{BC} = 0. \]

Non-trivial check: LQCD data agree with the constraints in the model thus validating it. [Mukherjee, Petreczky, SS, 1509.08887].
Meson and baryon like excitations survive up to $1.2 T_c$.

Quark-quasiparticles start dominating the pressure beyond $T \gtrsim 200$ MeV \Rightarrow hints of strongly coupled QGP [Mukherjee, Petreczky, SS, 1509.08887].

Introduce more sophistications: it is now possible to rule out di-quark excitations at least for the charm sector for $T > T_c$.

Challenge: Understand microscopics in strange sector. Fate of Kaon fluctuations reported. [Noronha-Hostler et. al., 1607.02527]
1. The QCD phase diagram: outstanding issues
2. Symmetries
3. Degrees of freedom in QCD
4. Realistic modelling of the heavy ion experiments and lattice
Basic issues and requirements

- Do the expanding fireball formed in most central heavy-ion collisions attain local thermal equilibrium? → can be modelled by viscous hydrodynamics.

- Equation of state from lattice QCD indispensable input for the hydrodynamic evolution.

- For most RHIC energies: $n_S = 0$, $n_Q/n_B = 0.4$ need to calculate EOS for the constrained case.

- In order to disentangle the thermal fluctuations from non-thermal ones, need to measure suitable fluctuations of conserved charges on the lattice → then perform dynamical evolution in rapidity and relate to experimental measurements. [Asakawa & Kitazawa 1512.05038].

Dynamical evolution of fluctuations near critical point in model studies show interesting patterns Mukherjee, Venugopalan, Yin, 1605.09341
EoS away from criticality

- The pressure already well determined by χ_B^6 for $\mu_B/T \leq 2.5$ [Bielefeld-BNL-CCNU, 1701.04325]. [See H. Ohno’s talk, Fri 14:00 PM].
- Extension to $\mu_B/T \sim 3$ is in progress to cover all the allowed range for energies of heavy-ion collisions to be probed in Beam Energy Scan II experiments → need to measure χ_B^8? Control errors on such measurements.

![Graph showing the pressure at different μ_B/T ratios](image)

Sayantan Sharma
Critical-end point search from Lattice

- The series for χ^B_2 should diverge at the critical point. On finite lattice ratios of Taylor coefficients equal, indep. of volume [Gavai & Gupta, 03]

- Radius of convergence from Taylor expansion: $r_{2n} \equiv \sqrt{2n(2n - 1)} \left| \frac{\chi^B_{2n}}{\chi^B_{2n+2}} \right|$.

- Definition is true for $n \to \infty$. How large n could be on a finite lattice?

- New studies from Taylor expansions and imaginary μ sets a current bound for CEP to be $\mu_B/T > 2$ [Bielefeld-BNL-CCNU, 1701.04325, D’Elia et. al., 1611.08285] though some studies point to a lower bound. [Datta et. al., 1612.06673, Fodor and Katz, 04]

![Diagram showing r^2_2 and r^4_4 estimators for μ_B/T versus T in MeV, with disfavored region for the location of a critical point highlighted in yellow.](image)
Fluctuations measured at freezeout: Are these thermalized?

- Ratios of cumulants are independent of the volume of the fireball.
- First to second moment:
 \[\frac{M_B}{\sigma_B^2} = \frac{\mu_B}{T} + \mathcal{O}\left(\frac{\mu_B}{T}\right)^3 \]
- \(S_B\sigma_B = \frac{\mu_B}{T} \frac{\chi_4}{\chi_2} + \mathcal{O}\left(\frac{\mu_B}{T}\right)^3 \)
- \(\mu_B \) is unknown parameter and model dependent.

Clear deviation from Hadron Resonance gas description in experimental data!
Fluctuations measured at freezeout: Are these thermalized?

- Ratios of cumulants are independent of the volume of the fireball.
- First to second moment:
 \[
 \frac{M_B}{\sigma_B^2} = \frac{\mu_B}{T} + O\left(\frac{\mu_B}{T}\right)^3
 \]
- \(S_B\sigma_B = \frac{\mu_B}{T} \frac{\chi_4^B}{\chi_2^B} + O\left(\frac{\mu_B}{T}\right)^3\)
 \(\mu_B\) is unknown parameter and model dependent.
- Instead \(S_B\sigma_B = \frac{M_B}{\sigma_B^2} \frac{\chi_4^B}{\chi_2^B} + \ldots\)
 removes model uncertainties!

[Refs: Karsch et. al., arxiv:1512.06987]

Clear deviation from Hadron Resonance gas description in experimental data!
Fluctuations at freezeout and lattice

\[R_{31}^B = \frac{S_B \sigma_B^3}{M_B} = \frac{\chi_4^B}{\chi_2^B} + \frac{1}{6} \left[\frac{\chi_6^B}{\chi_2^B} - \left(\frac{\chi_4^B}{\chi_2^B} \right)^2 \right] \left(\frac{M_B}{\sigma_B^2} \right)^2 \]

[Karsch et. al., arxiv:1512.06987]

- Experimental data tantalizingly close to QCD prediction \(\rightarrow \) Accidental coincidence or hints of thermalization?

- **Challenges** Need to perform dynamical evolution of the ratios of cumulants.

- **Caveat:** In experiments only charged baryons (protons) measured \(n_P \neq n_B \!), take into account \(p_t \) cuts in the data. Look for suitable observables!
Preparing for BES-II runs: QCD EoS for $\frac{\mu_B}{T} < 2 \rightarrow \sqrt{s}_{NN} \geq 20$ GeV already under control. Need to extend it for $\frac{\mu_B}{T} = 3$.
Preparing for BES-II runs: QCD EoS for $\mu_B/T < 2 \rightarrow \sqrt{s_{NN}} \geq 20$ GeV already under control. Need to extend it for $\mu_B/T = 3$.

Challenge: to extend to higher orders beyond χ^B_6. New techniques have been developed.
Preparing for BES-II runs: QCD EoS for $\mu_B/T < 2 \rightarrow \sqrt{s}_{NN} \geq 20$ GeV already under control. Need to extend it for $\mu_B/T = 3$.

Challenge: to extend to higher orders beyond χ^B_6. New techniques have been developed.

Higher order cumulants will also help in bracketing the possible CEP. Current LQCD data suggest $\mu_B(CEP)/T > 2$. More news on it from Paul Sorensen’s talk on Fri.
Preparing for BES-II runs: QCD EoS for $\frac{\mu_B}{T} < 2 \rightarrow \sqrt{s}_{NN} \geq 20$ GeV already under control. Need to extend it for $\frac{\mu_B}{T} = 3$.

Challenge: to extend to higher orders beyond χ^B_6. New techniques have been developed.

Higher order cumulants will also help in bracketing the possible CEP. Current LQCD data suggest $\mu_B(\text{CEP})/T > 2$. More news on it from Paul Sorensen’s talk on Fri.

Fluctuations data suggest QCD medium beyond T_c non-perturbative. Quasi-particle picture valid $\sim 1.5T_c$ and beyond. Existence of broad resonance atleast in charm sector observed \rightarrow crucial for dynamical modelling of hot QCD medium.