

Quasi-Parton distributions and the Gradient Flow

Kostas Orginos (W\&M/JLab)
Chris Monahan (Rutgers)

INTRODUCTION

- Goal: Compute properties of hadrons from first principles
- Parton distribution functions (PDFs)
- Lattice QCD calculations is a first principles method
- For many years calculations focused on Mellin moments
- Can be obtained from local matrix elements of the proton in Euclidean space
- Breaking of rotational symmetry -> power divergences
- only first few moments can be computed
- Recently direct calculations of PDFs in Lattice OCD are proposed
X. Ji, Phys.Rev.Lett. 110, (2013)
Y.-Q. Ma J.-W. Qiu (2014) 1404.6860
- First lattice Calculations already available
H.-W. Lin, J.-W. Chen, S. D. Cohen, and X. Ji, Phys.Rev. D91, 054510 (2015)
C. Alexandrou, et al, Phys. Rev. D92, 014502 (2015)

QUASI-PARTON DISTRIBUTIONS

- Defined as non-local (space), equal time matrix elements in Euclidean space
- Equal time: rotation to Minkowski space is trivial
- PDFs are obtained in the limit of infinite proton momentum
- Matching to the infinite momentum limit can be obtained through perturbative calculations
X. Xiong, X. Ji, J. H. Zhang, Y. Zhao, Phys. Rev. D 90, no. 1, 014051 (2014)
T. Ishikawa et al. arXiv:1609.02018 (2016)

QPDFS: DEFINITION

Light-cone PDFs:

$$
\begin{gathered}
f^{(0)}(\xi)=\int_{-\infty}^{\infty} \frac{\mathrm{d} \omega^{-}}{4 \pi} e^{-i \xi P^{+} \omega^{-}}\langle P| T \bar{\psi}\left(0, \omega^{-}, \mathbf{0}_{\mathrm{T}}\right) W\left(\omega^{-}, 0\right) \gamma^{+} \frac{\lambda^{a}}{2} \psi(0)|P\rangle_{\mathrm{C}} \\
W\left(\omega^{-}, 0\right)=\mathcal{P} \exp \left[-i g_{0} \int_{0}^{\omega^{-}} \mathrm{d} y^{-} A_{\alpha}^{+}\left(0, y^{-}, \mathbf{0}_{\mathrm{T}}\right) T_{\alpha}\right] \quad\left\langle P^{\prime} \mid P\right\rangle=(2 \pi)^{3} 2 P^{+} \delta\left(P^{+}-P^{\prime+}\right) \delta^{(2)}\left(\mathbf{P}_{\mathrm{T}}-\mathbf{P}_{\mathrm{T}}^{\prime}\right)
\end{gathered}
$$

Moments:

$$
a_{0}^{(n)}=\int_{0}^{1} \mathrm{~d} \xi \xi^{n-1}\left[f^{(0)}(\xi)+(-1)^{n} \bar{f}^{(0)}(\xi)\right]=\int_{-1}^{1} \mathrm{~d} \xi \xi^{n-1} f(\xi)
$$

Local matrix elements:

$$
\langle P| \mathcal{O}_{0}^{\left\{\mu_{1} \ldots \mu_{n}\right\}}|P\rangle=2 a_{0}^{(n)}\left(P^{\mu_{1}} \cdots P^{\mu_{n}}-\text { traces }\right) \quad \mathcal{O}_{0}^{\left\{\mu_{1} \cdots \mu_{n}\right\}}=i^{n-1} \bar{\psi}(0) \gamma^{\left\{\mu_{1}\right.} D^{\mu_{2}} \cdots D^{\left.\mu_{n}\right\}} \frac{\lambda^{a}}{2} \psi(0)-\text { traces }
$$

QPDFS: DEFINITION

$$
\begin{gathered}
h^{0}\left(z, P_{z}\right)=\frac{1}{2 P_{z}}\left\langle P_{z}\right| \bar{\psi}(z) \mathbf{W}(0, z ; \tau) \gamma_{z} \frac{\lambda^{a}}{2} \psi(0)\left|P_{z}\right\rangle_{\mathrm{C}} \\
\mathbf{W}(z, 0)=\mathcal{P} \exp \left[-i g_{0} \int_{0}^{z} \mathrm{~d} z^{\prime} A_{\alpha}^{3}\left(z^{\prime} \mathbf{v}\right) \mathbf{T}_{\alpha}\right], \quad \mathbf{v}=(0,0,1,0) \\
q^{(0)}\left(\xi, P_{z}\right)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \mathrm{d} z e^{i \xi z P_{z}} h^{(0)}\left(z, P_{z}\right)
\end{gathered}
$$

QPDFS: MAIN IDEA

$$
\lim _{P_{z} \rightarrow \infty} q^{(0)}\left(x, P_{z}\right)=f(x)
$$

X. Ji, Phys.Rev.Lett. 110, (2013)

Euclidean space time local matrix element is equal to the same matrix element in Minkowski space

$$
q\left(x, P_{z}\right)=\int_{-1}^{1} \frac{d \xi}{\xi} \widetilde{Z}\left(\frac{x}{\xi}, \frac{\mu}{P_{z}}\right) f(\xi, \mu)+\mathcal{O}\left(\Lambda_{\mathrm{QCD}} / P_{z}, M_{N} / P_{z}\right)
$$

The matching kernel can be computed in perturbation theory

> X. Xiong, X. Ji, J. H. Zhang, Y. Zhao, Phys. Rev. D 90, no. 1, 014051 (2014) T. Ishikawa et al. arXiv:1609.02018 (2016)

- Practical calculations require a regulator (Lattice)
- Continuum limit has to be taken
- renormalization
- Momentum has to be large compared to hadronic scales to suppress higher twist effects
- Practical issue with LQCD calculations at large momentum ... signal to noise ratio

First Lattice results (Chen et. al)

Convergence with momentum extrapolation

Including the 1-loop matching kernel

Plots taken from: Chen et al. arXiv:1603.06664
Similar results have been achieved by Alexandrou et. al (ETMC)

A more general point of view:

$$
\sigma\left(x, a, P_{z}\right) \quad \xrightarrow{a \rightarrow 0} \tilde{\sigma}\left(x, \tilde{\mu}^{2}, P_{z}\right)
$$

Minkowski space factorization:

$$
\widetilde{\sigma}\left(x, \widetilde{\mu}^{2}, P_{z}\right)=\sum_{\alpha=\{q, \bar{q}, g\}} H_{\alpha}\left(x, \frac{\widetilde{\mu}}{P_{z}}, \frac{\widetilde{\mu}}{\mu}\right) \otimes f_{\alpha}\left(x, \mu^{2}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{\widetilde{\mu}^{2}}\right)
$$

H_{α} computable in perturbation theory

PROCEDURE OUTLINE

- Compute equal time matrix elements in Euclidean space using Lattice QCD at sufficiently large momentum in order to suppress higher twist effects
- Take the continuum limit (renormalization)
- Equal time: Minkowski - Euclidean equivalence
- Perform the matching Kernel calculation in the continuum

GRADIENT FLOW SMEARING

Is a way to obtain a finite matrix element in the continuum that can then be used to obtain the light cone PDFs

Issues related to the continuum limit
have been also discussed in :
T. Ishikawa et al. arXiv:1609.02018 (2016)

Chen et al arXiv:1609.08102 (2016)

GRADIENT FLOW

It is a suitably chosen map of the fields to new fields that have UV fluctuations suppressed

$$
\begin{gathered}
A_{\mu} \rightarrow B_{\mu}\left[A_{\mu}\right] \\
\bar{q} \rightarrow \bar{\Psi}\left[\bar{q}, q, A_{\mu}\right] \quad q \rightarrow \Psi\left[\bar{q}, q, A_{\mu}\right]
\end{gathered}
$$

Can be defined in the continuum as well as on the lattice

Correlation functions of the new fields can be studied perturbatively or non-perturbatively and used as probes of the underlying QFT.

Diffusion equations (lattice version):

$$
\begin{aligned}
& \partial_{s} V_{\mu}(x, s)=-g_{0}^{2} \partial_{V_{\mu}(x, s)} S_{w} V_{\mu}(x, s) \\
& \partial_{s} \psi(x, s)=\vec{\Delta} \psi(x, s) \\
& \partial_{s} \bar{\psi}(x, s)=\bar{\psi}(x, s) \overleftarrow{\Delta}
\end{aligned}
$$

S_{w} is the Wilson gauge action
Δ is the lattice covariant laplacian s is the flow time
$s=0$ the fields take the value of the original fields in the path integral Integrate these equations for some time s resulting damping of the UV fluctuations down to scale

$$
\mu=1 / \sqrt{s}
$$

Solutions to the flow equations (leading order in coupling constant)

$$
\begin{aligned}
\psi(x, s) & =\int K(x-y, s) q(y) d^{4} y+\cdots \\
B_{\mu}(x, s) & =\int K(x-y, s) A_{\mu}(y) d^{4} y+\cdots
\end{aligned}
$$

The "heat kernel" K is:

$$
K(x, s)=\frac{e^{-x^{2} / 4 s}}{(4 \pi s)^{2}}
$$

Hence the exponential damping of UV fluctuations to scales:

$$
\mu=1 / \sqrt{s}
$$

Notable results (Luscher):

Smeared field

- Correlation functions of "smeared" gauge fields are finite if the underlying theory is renormalized (BRST symmetry)
- Correlation functions of "smeared" fermion fields are finite if an additional wave function renormalization is included

- Fermion wave function renormalization can be removed using the "ringed" smeared fermion fields
H. Makino and H. Suzuki, PTEP 2014, 063B02 (2014), 1403.4772.
K. Hieda and H. Suzuki (2016), 1606.04193

Ringed smeared fermions

$$
\begin{aligned}
& \dot{\chi}(\tau, x)=\sqrt{\frac{-2 \operatorname{dim}(R) N_{\mathrm{f}}}{(4 \pi)^{2} \tau^{2}\langle\bar{\chi}(\tau, x) \overleftrightarrow{D D} \chi(\tau, x)\rangle}} \chi(\tau, x) \\
& \dot{\chi}(\tau, x)=\sqrt{\frac{-2 \operatorname{dim}(R) N_{\mathrm{f}}}{(4 \pi)^{2} \tau^{2}\langle\bar{\chi}(\tau, x) \overleftrightarrow{D P} \chi(\tau, x)\rangle}} \bar{\chi}(\tau, x)
\end{aligned}
$$

Ringed fermion correlation functions require no additional renormalization
H. Makino and H. Suzuki, PTEP 2014, 063B02 (2014), 1403.4772.
K. Hieda and H. Suzuki (2016), 1606.04193

SMEARED QUASI-PDFS

$$
h^{(s)}\left(\frac{z}{\sqrt{\tau}}, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)=\frac{1}{2 P_{z}}\left\langle P_{z}\right| \bar{\chi}(z ; \tau) \mathcal{W}(0, z ; \tau) \gamma_{z} \frac{\lambda^{a}}{2} \chi(0 ; \tau)\left|P_{z}\right\rangle_{\mathrm{C}}
$$

τ is the flow time
χ is the ringed smeared quark field
\mathcal{W} is the smeared gauge link

$$
q^{(s)}\left(\xi, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)=\int_{-\infty}^{\infty} \frac{\mathrm{d} z}{2 \pi} e^{i \xi z P_{z}} P_{z} h^{(s)}\left(\sqrt{\tau} z, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)
$$

At fixed flow time the quasi-PDF is finite in the continuum limit

Using the previous definitions we have

$$
\begin{aligned}
\left(\frac{i}{P_{z}} \frac{\partial}{\partial z}\right)^{n-1} h^{(s)} & \left(\frac{z}{\sqrt{\tau}}, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)= \\
& \int_{-\infty}^{\infty} \mathrm{d} \xi \xi^{n-1} e^{-i \xi z P_{z}} q^{(s)}\left(\xi, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)
\end{aligned}
$$

By introducing the moments

$$
b_{n}^{(s)}\left(\sqrt{\tau} P_{z}, \frac{\Lambda_{\mathrm{QCD}}}{P_{z}}, \frac{M_{\mathrm{N}}}{P_{z}}\right)=\int_{-\infty}^{\infty} \mathrm{d} \xi \xi^{n-1} q^{(s)}\left(\xi, \sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} M_{\mathrm{N}}\right)
$$

Taking the limit of z going to 0 we obtain:

$$
b_{n}^{(s)}\left(\sqrt{\tau} P_{z}, \frac{\Lambda_{\mathrm{QCD}}}{P_{z}}, \frac{M_{\mathrm{N}}}{P_{z}}\right)=\frac{c_{n}^{(s)}\left(\sqrt{\tau} P_{z}\right)}{2 P_{z}^{n}}\left\langle P_{z}\right|\left[\bar{\chi}(z ; \tau) \gamma_{z}\left(i \overleftarrow{D}_{z}\right)^{(n-1)} \frac{\lambda^{a}}{2} \chi(0 ; \tau)\right]_{z=0}\left|P_{z}\right\rangle_{\mathrm{C}}
$$

i.e. the moments of the quasi-PDF are related to local matrix elements of the smeared fields

These matrix elements are not twist-2. Higher twist effects enter as corrections that scale as powers of

$$
\frac{\Lambda_{\mathrm{QCD}}}{P_{z}}, \frac{M_{N}}{P_{z}}
$$

after removing M_{N} / P_{z} effects

$$
b_{n}^{(s)}\left(\sqrt{\tau} P_{z}, \sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)=c^{(s)}\left(\sqrt{\tau} P_{z}\right) b_{n}^{(s, \text { twist }-2)}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)+\mathcal{O}\left(\frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)
$$

Small flow time expansion:

$$
b_{n}^{(s, \text { twist }-2)}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)=\widetilde{C}_{n}^{(0)}(\sqrt{\tau} \mu) a^{(n)}(\mu)+\mathcal{O}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)
$$

$a^{(n)}(\mu) \quad$ are the moments of the PDFs
The quasi-PDF moments then are:

$$
b_{n}^{(s)}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)=C_{n}^{(0)}\left(\sqrt{\tau} \mu, \sqrt{\tau} P_{z}\right) a^{(n)}(\mu)+\mathcal{O}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}, \frac{\Lambda_{\mathrm{QCD}}^{2}}{P_{z}^{2}}\right)
$$

$$
\Lambda_{\mathrm{QCD}}, M_{N} \ll P_{z} \ll \tau^{-1 / 2}
$$

Introducing a kernel function such that:

$$
C_{n}^{(0)}\left(\sqrt{\tau} \mu, \sqrt{\tau} P_{z}\right)=\int_{-\infty}^{\infty} d x x^{n-1} \widetilde{Z}\left(x, \sqrt{\tau} \mu, \sqrt{\tau} P_{z}\right)
$$

We can undo the Mellin transform:

$$
q^{(s)}\left(x, \sqrt{\tau} \Lambda_{\mathrm{QCD}}, \sqrt{\tau} P_{z}\right)=\int_{-1}^{1} \frac{d \xi}{\xi} \tilde{Z}\left(\frac{x}{\xi}, \sqrt{\tau} \mu, \sqrt{\tau} P_{z}\right) f(\xi, \mu)+\mathcal{O}\left(\sqrt{\tau} \Lambda_{\mathrm{QCD}}\right)
$$

Therefore smeared quasi-PDFs are related to PDFs if

$$
\Lambda_{\mathrm{QCD}}, M_{N} \ll P_{z} \ll \tau^{-1 / 2}
$$

CONCLUSIONS

- Quasi-PDFs provide a novel way to study hadron structure in Lattice OCD
- Lattice calculations from several groups are on the way
- Several ideas for dealing with the continuum limit are now developing
- Here I presented gradient flow as a tool that allows us to obtain continuum quasiPDFs that can then be related to PDFs via a convolution to a perturbatively calculable kernel function.
- Lattice calculations to understand the effectiveness of this approach are underway
- Analytic calculations for obtaining the matching kernel are also being developed

