Hadron spectroscopy at JPAC

Alessandro Pilloni

Joint Physics Analysis Center
7th workshop of the APS Topical GHP Meeting
Washington DC, February $1^{\text {st }} 2017$

Jefferson Lab

Joint Physics Analysis Center

JPAC is a collaboration between theorists, phenomenologists, and experimentalists to provide phenomenological and data analysis tools for hadron physics
N. Sherrill, A. Jackura, I. Lorenz,
V. Mathieu, G. Fox, T. Londergan,
E. Passemar (IU), A. Szczepaniak (IU/JLab)
B. Hu, M. Mai, M. Döring, R. Workman (GWU)
V. Pauk, A. Pilloni, V. Mokeev (JLab)

C. Fernandez-Ramirez (UNAM)

Former members:
L. Dai (Bonn), I. Danilkin (Mainz),
P. Guo (Cal. State), M. Shi (Peking)

Students, Postdocs, Faculties

Production

- > 40 Research Papers (Phys.Rev., Phys.Lett, Eur.J. Phys.)
- ~120 Invited Talks and Seminars
- O(10) ongoing analyses
- Summer School on Reaction Theory (IU, 2015 and 2017)
- Workshop "Future Directions in Hadron Spectroscopy" (JLab, 2014)

$Z_{c}(3900)$	AP et al.,	arXiv:1612.06490
$\gamma p \rightarrow \eta p$	J. Nys et al.,	arXiv:1611.04658
$P_{c}(4450)$	A. Blin et al.,	PRD94, 034002
$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	P. Guo et al.,	PRD92, 054016; arXiv:1608.01447
$\Lambda(1405)$	C. Fernandez-Ramirez et al.,	PRD93, 074015
$K N \rightarrow K N$	C. Fernandez-Ramirez et al.,	PRD93, 034029
$\pi N \rightarrow \pi N$	V. Mathieu et al.,	PRD92, 074004
$\gamma p \rightarrow \pi^{0} p$	V. Mathieu et al.,	PRD92, 074013
$\omega, \phi \rightarrow \pi^{+} \pi^{-} \pi^{0}$	I. Danilkin et al.,	PRD91,094029
$\gamma p \rightarrow K^{+} K^{-} p$	M. Shi et al.,	PRD91,034007

Interactive tools

- Completed projects are fully documented on interactive portals
- These include description on physics, conventions, formalism, etc.
- The web pages contain source codes with detailed explanation how to use them. Users can run codes online, change parameters, display results.

http://www.indiana.edu/~ipac/

Formalism
The pion-nucleon scattering is a function of 2 variables. The first is the beam momentum in the laboratory frame $p_{\text {lab }}$ (in GeV) or the total energy squared $s=W^{2}$ (in GeV^{2}). The second is the cosine of \qquad Resources

- Publications: [Mat15a] and [Wor12a]
- SAID partial waves: compressed zip file
- C/C++: C/C++ file
- Input file: param.txt

Output files: output0.txt, output1.txt, SigTot.txt, Observables0.txt, Observables1.txt

- Contact person: Vincent Mathieu

Last update: June 2016
The SAID partial waves are in the format provided online on the SAID webpage
$p_{\text {lab }} \quad \delta \epsilon(\delta) \quad 1-\eta^{2} \epsilon\left(1-\eta^{2}\right) \quad \operatorname{Re} \mathrm{PW} \quad \operatorname{Im} \operatorname{PW}$
δ and η are the phase-shift and the inelasticity. $\epsilon(x)$ is the error on x
SGT is the total cross section and SGR is the total reaction cross section.
Format of the input and output files: [show/hide]
Description of the C/C++ code: [show/hide]
Simulation
Range of the running variable:
s in $\mathrm{GeV}^{2} \quad$ (min max step) 1,2
$p_{\text {lab }}$ in GeV (min max step) 0
ν in $\mathrm{GeV} \quad$ (min max step) 0,3
t in $\mathrm{GeV}^{2} \quad$ (min max step) -1

The fixed variable:

t in GeV^{2}
$p_{\text {lab }}$ in GeV 5
start reset

Results

Hadron Spectroscopy

Meson
Baryon
Glueball

Hybrids

Tetraquark

S-Matrix principles

s-channel

A(s,t)

M-decay channel Crossing

Unitarity

$$
A(s, t)=\sum_{l} A_{l}(s) P_{l}\left(z_{s}\right)
$$

Analyticity

$$
A_{l}(s)=\lim _{\epsilon \rightarrow 0} A_{l}(s+i \epsilon)
$$

These are constraints the amplitudes have to satisfy, but do not fix the dynamics

Resonances (QCD states) are poles in the unphysical Riemann sheets

Pole hunting

More complicated structure when more thresholds arise: two sheets for each new threshold

III sheet: usual resonances IV sheet: cusps (virtual states)

Case study, $Z_{c}(3900)$

One can test different parametrizations of the amplitude, which correspond to different singularities \rightarrow different natures

Triangle rescattering, logarithmic branching point

Szczepaniak, PLB747, 410-416 Szczepaniak, PLB757, 61-64 Guo et al. PRD92, 071502

(anti)bound state, II/IV sheet pole

Compact QCD state, III sheet pole

Maiani et al., PRD71, 014028 Maiani et al., PRD87, 111102 AP et al., Phys.Rept. 668

Singularities and lineshapes

Different lineshapes according to different singularities
AP et al. (JPAC), arXiv:1612.06490

Pole extraction

Case study, Z_{c} (3900)

No strong conclusion can be driven yet, but we are establishing the method to use when higher statistics will be available (in particular to constrain the $D_{1}(2420)$ contribution)

Pentaquark photoproduction

We propose to search the $P_{c}(4450)$ state in photoproduction (no triangle)
Q. Wang et al. PRD92, 034022
M. Karliner et al. PLB752, 329-332

Kubarovsky et al. PRD92, 031502
\rightarrow See talk by B. Duran!
We use the (few) existing data and VMD + pomeron inspired bkg to estimate the cross section

$J^{P}=(3 / 2)^{-}$			
$\sigma_{s}(\mathrm{MeV})$	0	60	120
A	$0.156_{-0}^{+0.029}$	$0.157_{-0.021}^{+0.039}$	$0.157_{-0.022}^{+0.037}$
α_{0}	$1.151_{-0.018}^{+0.018}$	$1.150_{-0.0028}^{+0.018}$	$1.150_{-0.015}^{+0.015}$
$\alpha^{\prime}\left(\mathrm{GeV}^{-2}\right)$	$0.112_{-0.054}^{+0.033}$	$0.111_{-0.004}^{+0.037}$	$0.111_{-0.054}^{+0.038}$
$s_{t}\left(\mathrm{GeV}^{2}\right)$	$16.8_{-0.7}^{+1.7}$	$16.9_{-1.6}^{+2.0}$	$16.9_{-1.1}^{+2.0}$
$b_{0}\left(\mathrm{GeV}^{-2}\right)$	$1.01_{-0.29}^{+0.47}$	$1.02_{-0.32}^{+0.61}$	$1.03_{-0.31}^{+0.49}$
$\mathcal{B}_{\psi p}(95 \% \mathrm{CL})$	$\leq 29 \%$	$\leq 30 \%$	$\leq 23 \%$

(a) Pomeron exchange

(b) Resonant contribution

A. Blin et al. (JPAC), PRD94, 034002

Finite energy sum rules

$\eta \pi$ production

The $\eta \pi$ system is one of the golden modes for hunting hybrid mesons
We build the partial waves amplitude according to the N / D technique
We test the method on the D-wave data, where the a_{2} and the a_{2}^{\prime} show up
The coupled channel analysis to extract the parameters of the exotic P-wave is ongoing
A. Jackura, V. Pauk (JPAC), in progress

Summary

- We have established a large portfolio of research projects that directly benefit the ongoing and future analyses.
- JPAC members work directly with data analysis teams from CLAS, GlueX, COMPASS, LHCb, BES3
- There is strong institutional support to this effort from JLab, IU, GWU.
- There are numerous expansion paths, that in particular take advantage of the expertise in lattice, hadron structure, global pdf analyses, etc. that exist in the theory group
- The next ~ 10 years will focus on extracting physics from the new experiments (and we expect support from experimental groups).

BACKUP

$\eta \pi$ production

Joint Physics Analysis Center

- JPAC was funded to support the extraction of physics results from analysis of experimental data from JLab12 and other accelerator laboratories
- This is achieved through work on theoretical, phenomenological and data analysis tools
- JPAC aims to facilitate close collaboration between theorists, phenomenologists, and experimentalists worldwide
- It is engaged in education of further generation of hadron physics practitioners

π, ρ photoproduction

Test factorization on the simplest cases

1. Neutral pion photoproduction
2. Charged pion photoproduction
3. Rho meson photoproduction

natural exchanges: $\quad \rho / \omega / f_{2} / a_{2} / \mathbb{P}$
$P=(-)^{J}$
unnatural exchanges:

$P=-(-)^{J}$
special ?

$$
\gamma p \rightarrow \pi^{0} p
$$

Model based on factorization with parameters fitted

axial-vector exchanges strength decreases with energy

More precise data@JLAB could confirm
V. Mathieu et al. (JPAC), PRD92, 074013

$\gamma p \rightarrow \pi^{+} n$

Pion dominate very small $|t|$:
[Boyarski et al. 1968]

Factorization of Regge residues:
$\left(\lambda_{\gamma}, \lambda_{\pi}\right)=(1,0)$ and

$$
0.01
$$

0.1

1
$\left(\lambda_{p}, \lambda_{n}\right)=\left(-\frac{1}{2},+\frac{1}{2}\right)$
$A_{-\frac{1}{2} \frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^{2}-t}$
$\left(\lambda_{p}, \lambda_{n}\right)=\left(+\frac{1}{2},-\frac{1}{2}\right)$
$A_{\frac{1}{2}-\frac{1}{2}}^{10} \propto \frac{-t}{m_{\pi}^{2}-t}$
William's Poor man absorption: $\quad \rightarrow \frac{-m_{\pi}^{2}}{m_{\pi}^{2}-t}$
V. Mathieu (JPAC), in progress

$K N$ scattering and the $\Lambda(1405)$

Coupled-channel K matrix model (up to 13 channels per partial wave), analyticity in angular momentum enforced, fit to KSU partial waves

One of the $\Lambda(1405)$ poles is out of the trajectory \rightarrow non 3-q state
C. Fernandez-Ramirez et al. (JPAC), PRD93, 034029
C. Fernandez-Ramirez et al. (JPAC), PRD93, 074015

$\eta \rightarrow 3 \pi$

Isospin violating decay, sensitive to quark mass difference

Dispersive analysis (Khuri-Treiman eq.)

+ fitting to data
+ matching to NLO χ PT @ Adler zero

Data from
WASA-at-COSY PRC90, 045207 KLOE-2 JHEP 05, 019

$$
Q=\frac{m_{s}^{2}-\left(m_{d}+m_{u}\right)^{2} / 4}{m_{d}^{2}-m_{u}^{2}} \sim 21.6 \pm 0.4
$$

P. Guo et al. (JPAC), PRD92, 054016 P. Guo et al. (JPAC), arXiv:1608.01447

$\psi^{(\prime)} \rightarrow \pi^{+} \pi^{-} \pi^{0}$ within dual models

BESIII, Phys.Lett. B710 (2012) 594-599

$A(s, t)=\frac{\Gamma(-J(s)) \Gamma(-J(t))}{\Gamma(-J(s)-J(t))}$
A. Szczepaniak and M. Pennington, PLB737, 283

$J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$

This is a gluon-rich process, expected to be one of the golden channels for the search of the scalar glueball

Omnès function + left hand cut parametrization (ρ / ω exchange)
$f_{\mu}^{J}(s)=v_{\mu}^{J}(s)+\Omega(s)\left(P_{k}(s)+\frac{1}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s^{\prime} \frac{v_{\mu}^{J}\left(s^{\prime}\right) e^{i \delta_{J}\left(s^{\prime}\right)} \sin \delta_{J}\left(s^{\prime}\right) \Omega^{-1}\left(s^{\prime}\right)}{\left(s^{\prime}\right)^{k}\left(s^{\prime}-s\right)}\right)$

The preliminary fit qualitatively reproduces the σ region and the higher resonances
A. Pilloni (JPAC), in progress

$J / \psi \rightarrow \gamma \pi^{0} \pi^{0}$

We start approximating the problem to 1 channel, i.e. neglecting inelasticities. Unitarity and dispersion relations allow us to write the solution in terms of the Omnès function
$\operatorname{Disc}_{R} f_{\mu}^{J}=\rho(s) f_{\mu}^{J} A_{\pi \pi}^{J *}=f_{\mu}^{J} e^{-i \delta_{J}} \sin \delta_{J}$

Depends on the $\pi \pi$ scattering phase, parametrized with K matrix

$$
K_{\pi}=\frac{m_{\pi}^{2}-2 s}{2 f_{\pi}^{2}}
$$

Adler zero

 describes the σ region$$
K_{i=}=\sum_{i} \frac{a t}{m_{i}-3}+\sum_{j} w_{j}^{j}
$$

K-matrix poles

Background terms (effective LHC)

$\gamma p \rightarrow \rho^{0} p$

Use beam polarization to extract spin density matrix elements:

$$
\begin{aligned}
\rho_{M M^{\prime}}^{0} & =\frac{1}{N} \sum_{\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}}} A_{\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}} M} A_{\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}} M^{\prime}}^{*} \\
\rho_{M M^{\prime}}^{1} & =\frac{1}{N} \sum_{\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}}} A_{\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}} M} A_{-\lambda_{\gamma} \lambda_{p} \lambda_{p^{\prime}} M^{\prime}}^{*} \\
N & =\sum_{\lambda}\left|A_{\lambda}\right|^{2}
\end{aligned}
$$

At leading s, one can separate natural and unnatural exchanges
Test factorization at top vertex: non-flip $\beta_{0}(\sqrt{-t})^{0}$, single-flip $\beta_{0}(\sqrt{-t})^{0}$, double-flip $\beta_{2}(\sqrt{-t})^{2}$

Fit gives $\beta_{0}: \beta_{1}: \beta_{2}=1.00: 0.14:-0.09$, which agrees with the expected trend

Other models: triangle singularity

Logarithmic branch points due to exchanges in the cross channels can simulate a resonant behavior, only in very special kinematical conditions (Coleman and Norton, Nuovo Cim. 38, 438), However, this effects cancels in Dalitz projections, no peaks (Schmid, Phys.Rev. 154, 1363)

$$
f_{0, i}(s)=b_{0, i}(s)+\frac{t_{i j}}{\pi} \int_{s_{i}}^{\infty} d s^{\prime} \frac{\rho_{j}\left(s^{\prime}\right) b_{0, j}\left(s^{\prime}\right)}{s^{\prime}-s}
$$

...but the cancellation can be spread in different channels, you might still see peaks in other channels only!

Szczepaniak, PLB747, 410-416 Szczepaniak, PLB757, 61-64 Guo, Meissner, Wang, Yang PRD92, 071502

Lattice QCD and amplitude analysis

known kinematical function $\longrightarrow Z\left(E_{i}, L\right)=T\left(E_{i}\right) \longleftarrow$ infinite volume amplitude discrete energy spectrum of states in the lattice

in general «solution» of the Lüscher condition requires an analytical model for T

S-Matrix principles

- Amplitude are analytical functions of the Mandelstam variables constrained, $A(s, t)$ fundamental object
- Amplitude bumps/peaks seen on the real axis (experiment) come from singularities on unphysical sheets
- The only singularities come from physical processes (thresholds, resonances)
- The singularities on unphysical sheet are dynamical (from QCD) and are not determined by S-matrix. They can be constrained by S-matrix

$$
\begin{array}{lll}
& A(4+i \epsilon)=\sqrt{4 e^{i \epsilon}}=2 & \begin{array}{l}
\text { Experiment } \\
\text { happens here }
\end{array} \\
A(s)=\sqrt{S} & A_{I I}(4+i \epsilon)=-2
\end{array}
$$

