Nucleon matrix elements from Moments of Correlation Functions and the Proton Charge Radius

Chia Cheng Chan (LBNL)

Chris Bouchard (Glasgow)

Kostas Orginos (JLab/WM)

David Richards (JLab)*

*Speaker

Proton EM form factors

 Nucleon Pauli and Dirac Form Factors described in terms of matrix element of vector current

$$\langle N \mid V_{\mu} \mid N \rangle(\vec{q}) = \bar{u}(\vec{p}_f) \left[F_q(q^2) \gamma_{\mu} + \sigma_{\mu\nu} q_{\nu} \frac{F_2(q^2)}{2m_N} \right] u(\vec{p}_i)$$

• Alternatively, Sach's form factors determined in experiment $G_E(Q^2) = F_1(Q^2) - \frac{Q^2}{4M^2}F_2(Q^2)$

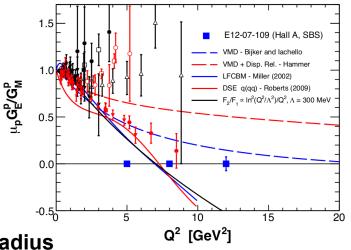
$$G_E(Q^2) = F_1(Q^2) + F_2(Q^2)$$

Charge radius is slope at $Q^2 = 0$

$$\left. \frac{\partial G_E(Q^2)}{\partial Q^2} \right|_{Q^2 = 0} = -\frac{1}{6} \langle r^2 \rangle = \left. \frac{\partial F_1(Q^2)}{\partial Q^2} \right|_{Q^2 = 0} - \frac{F_2(0)}{4M^2}$$

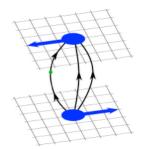
EM Form factors - II

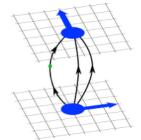
PRAD: E12-11-106



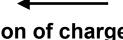
Approved expt E12-07-109

 $Q^2 \lesssim 8.2 \text{ GeV}^2$ $Q^2 \lesssim 4.1 \text{ GeV}^2$





Nucleon Charge Radius



Direct calculation of charge radius through coordinatespace moments

UKQCD, Lellouch, Richards et al., NPB444 (1995) 401

Bouchard, Chang, Orginos, Richards, Lattice 2016

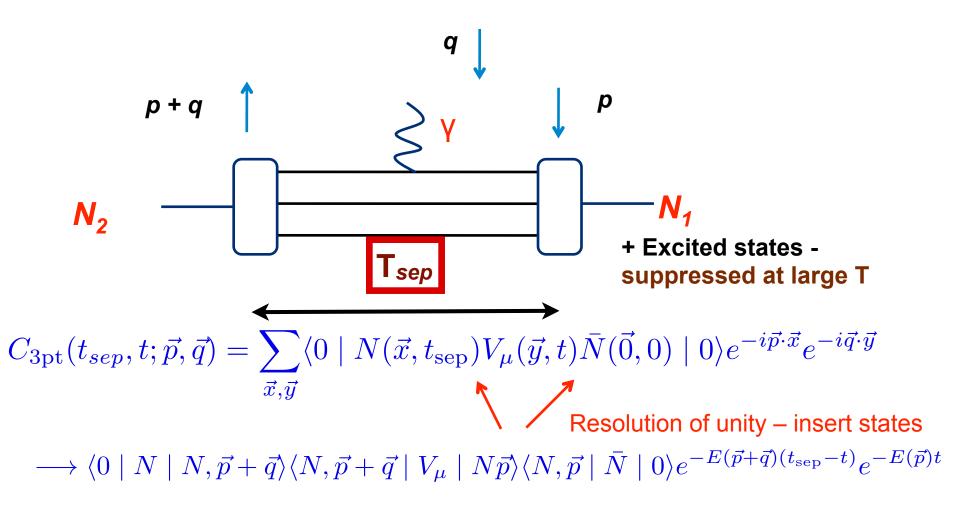
Boosted interpolating operators

Bali et al., Phys. Rev. D 93, 094515 (2016) LHPC, Syritsyn, Gambhir, Orginos et al, Lattice 2016

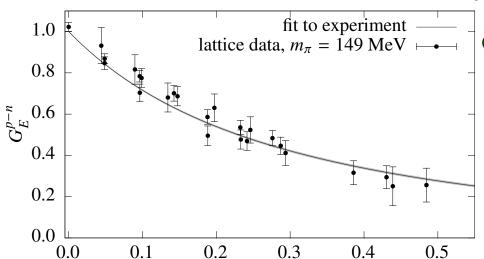
Distillation + Operators for hadrons in flight

Dudek, Edwards, Thomas, Phys. Rev. D 85, 014507 (2012)

Form Factor in LQCD



Electromagnetic Form Factors



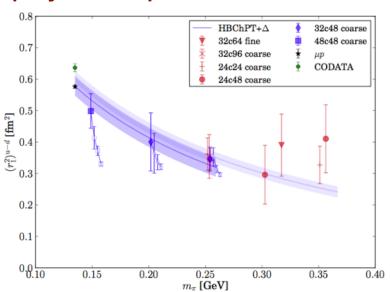
 O^2 (GeV²)

Why can't we get rid of those excited states!

Wilson-clover lattices from BMW

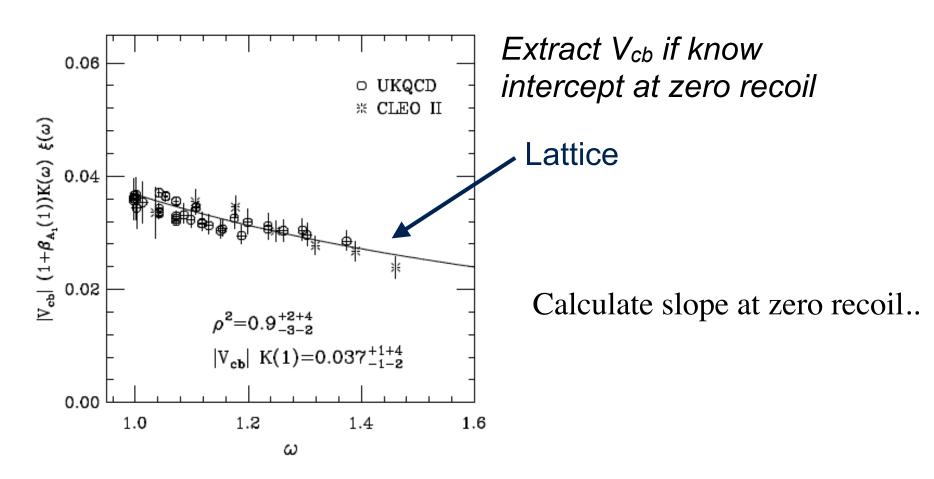
Green et al (LHPC), Phys. Rev. D 90, 074507 (2014)

Hadron structure at nearlyphysical quark masses



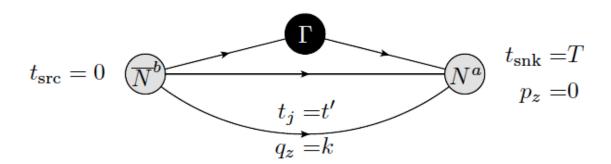
Smallest non-zero Q² determined by spatial volume ⇒Calculate slope of form factor directly.

Isgur-Wise Function and CKM matrix



UKQCD, L. Lellouch et al., Nucl. Phys. B444, 401 (1995), hep-lat/9410013

Moment Methods



Introduce three-momentum projected three-point function

$$C^{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x'}} \left\langle N_{t,\vec{x}}^a \Gamma_{t',\vec{x'}} \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx'_z}$$

Now take derivative w.r.t. k²

$$C'_{3\text{pt}}(t,t') = \sum_{\vec{x},\vec{x}'} \frac{-x'_z}{2k} \sin(kx'_z) \left\langle N^a_{t,\vec{x}} \Gamma_{t',\vec{x}'} \overline{N}^b_{0,\vec{0}} \right\rangle$$

$$\lim_{k^2 \to 0} C'_{3pt}(t, t') = \sum_{\vec{x}, \vec{x'}} \frac{-x_z'^2}{2} \left\langle N_{t, \vec{x}}^a \Gamma_{t', \vec{x'}} \overline{N}_{0, \vec{0}}^b \right\rangle.$$

Odd moments vanish by symmetry

Moment Methods - II

Analogous expressions for two-point functions:

$$C_{2pt}(t) = \sum_{\vec{x}} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle e^{-ikx_z}$$

$$C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z}{2k} \sin(kx_z) \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle$$

$$\lim_{k^2 \to 0} C'_{2pt}(t) = \sum_{\vec{x}} \frac{-x_z^2}{2} \left\langle N_{t,\vec{x}}^b \overline{N}_{0,\vec{0}}^b \right\rangle.$$

Lowest coordinate-space moment ⇔ slope at zero momentum

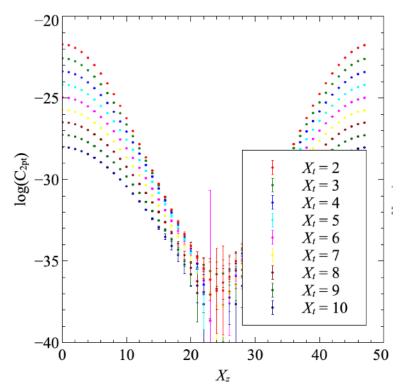
Lattice Details

 Two degenerate light-quark flavors, and strange quark set to its physical value

$$a \simeq 0.12 \text{ fm}$$
 $m_{\pi} \simeq 400 \text{ MeV}$ Lattice Size : $24^3 \times 64$

• To gain control over finite-volume effects, replicate in z direction: $24 \times 24 \times 48 \times 64$

Two-point correlator

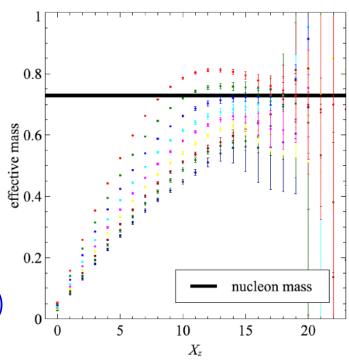


"Effective mass"

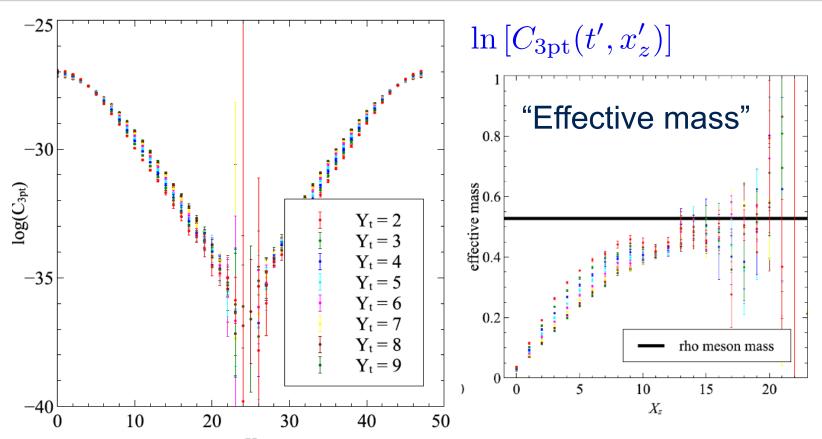
$$\ln C_{\rm 2pt}(t,x_z)/C_{\rm 2pt}(t,x_z+1)$$

$$\ln \left[C_{\text{2pt}}(t, x_z) \right]$$

Any polynomial moment in x_z converges



Three-point correlator



- Spatial moments push the peak of the correlator away from origin
- Larger finite volume corrections compared to regular correlators

Fitting the data...

$$\begin{split} C^{\text{3pt}}(t,t') &= \sum_{n,m} \frac{Z_n^{\dagger a}(0) \Gamma_{nm}(k^2) Z_m^b(k^2)}{4 M_n(0) E_m(k^2)} e^{-M_n(0)(t-t')} e^{-E_m(k^2)t'} \\ C_{\text{2pt}}(t) &= \sum_{m} \frac{Z_m^{b\dagger}(k^2) Z_m^b(k^2)}{2 E_m(k^2)} e^{-E_m(k^2)t} \\ \text{where} \qquad Z_n^{\dagger a}(0) &\equiv \langle \Omega | N^a | n, p_i = (0,0,0) \rangle \\ Z_m^b(k^2) &\equiv \langle m, p_i = (0,0,k) | \, \overline{N}^b \, | \Omega \rangle \\ \hline \Gamma_{nm}(k^2) &\equiv \langle n, p_i = (0,0,0) \, | \Gamma | m, p_i = (0,0,k) \rangle \end{split}$$

Allow for multi-state contributions in the fit

Fitting - II

Now look at the functional form of derivatives:

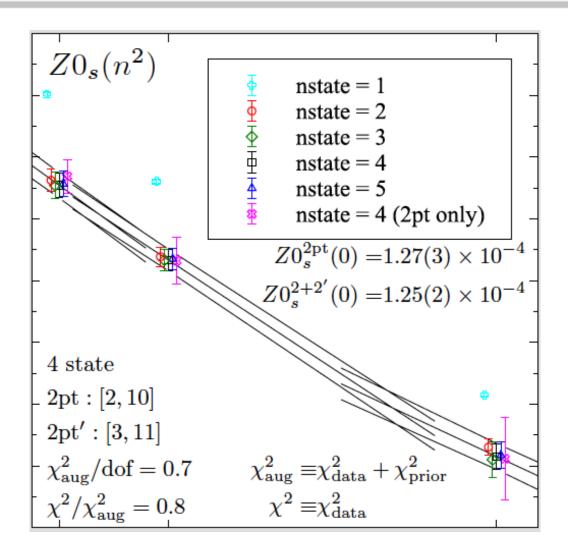
$$C'_{\text{2pt}}(t) = \sum_{m} C^{\text{2pt}}_{m}(t) \left(\frac{2Z^{b'}_{m}(k^{2})}{Z^{b}_{m}(k^{2})} - \frac{1}{2[E_{m}(k^{2})]^{2}} - \frac{t}{2E_{m}(k^{2})} \right)$$

$$C'_{\text{3pt}}(t,t') = \sum_{n,m} C^{\text{3pt}}_{nm}(t,t') \left(\frac{\Gamma'_{nm}(k^{2})}{\Gamma_{nm}(k^{2})} \right) \frac{Z^{b'}_{m}(k^{2})}{Z^{b}_{m}(k^{2})} - \frac{1}{2[E_{m}(k^{2})]^{2}} - \frac{t'}{2E_{m}(k^{2})} \right)$$

spatially extended sources

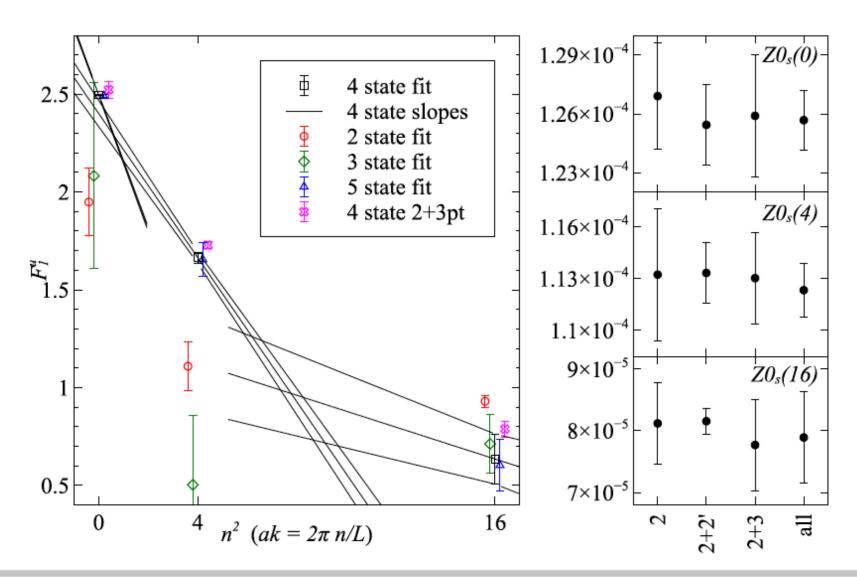
Second distance scale

Fitting - III



In practice we use multiexponential, Bayesian fits

F₁ Form Factor



Conclusions

- Moment methods allow direct calculations of slopes of form factors at momenta allowed on lattice
- Lowest (even) moment gives the slope at $Q^2 = 0$.
- Larger finite-volume effects than regular correlators (perhaps expected - no free lunch).
- Illustrated here for u-quark contribution to EM form factor; d-quark and sea-quark contributions in progress....

