DFT Analyses of Structures that Limit SRF Cavity Performance

Denise Ford

SRF Materials Workshop
July 16, 2012
Overview

- Background - Impurities in niobium SRF cavities
- Methods - Modeling crystal structures with DFT
- Hydrogen in Niobium
 - Niobium hydride phases
 - Interactions with the ideal and defective lattice
 - Application to SRF cavity performance and processing
- Other impurities (O, N, C) in Niobium
 - Niobium Oxide phases
 - Effect on hydride phase formation
 - Application to SRF cavity performance and processing
 - An additional concern
Superconducting Radio-Frequency (SRF) Cavities
Limitations Related to Impurities in Niobium

- **Impurities** can
 - be dissolved in the metal and cause reduction of T_c and local heating
 - form precipitates with local magnetic moments or reduced T_c

- Resulting cavity behaviors include
 - **Q – disease**, caused by large hydride precipitates?
 - **Q – slope**, caused by smaller precipitates; dissolved oxygen, hydrogen, nitrogen, etc.; magnetic structures?
Impurity Absorption into Niobium Cavity Forming and Processing Procedure

- **Forming**
 - Complex – shape and ultra high purity – source of many lattice defects

- **Processing**
 - **Bulk electropolish** (~150 μm) of inner surface - remove damage layer from forming
 - Wash - remove chemical residues from EP
 - **800 °C bake** - outgas hydrogen absorbed during chemical processing
 - Tune - shape changes during processing
 - **Fine electropolish** - smooth surface
 - Wash - remove chemical residues from EP
 - Rinse - remove dust (prevent field emission)
 - Assemble
 - **120 °C bake** - it works (why?)
 - Test performance

Denise Ford
Fermilab, Northwestern University
July 16, 2012
Density Functional Theory Modeling
Creating a Model

Properties of interest include:

- Energies – electronic, vibrational, strain
- Geometry
- Charge distribution
- Magnetic moments
- Phonons

Build a crystal structure
Infinitely expand structure with periodic boundary conditions

bcc Niobium

Compare properties of different structures with the same stoichiometry

NbH (β niobium hydride)

July 16, 2012
Density Functional Theory Modeling Calculations

- Solve the electronic structure problem for the model system
- Hohenberg, Kohn, Sham – obtain properties from electron density instead of many-electron wavefunction: \(E = T(\rho) + V(\rho) + \text{Exc}(\rho) \)
 - \(T(\rho) \) – kinetic energy
 - \(V(\rho) \) – potential energy
 - \(\text{Exc}(\rho) \) – exchange-correlation energy - unknown form
 -> describe with parameterized ‘functionals’

- Parameters
 - Vienna Ab Initio Simulation Package (VASP)
 - Plane wave basis set w/400 eV cutoff
 - PAW pseudopotentials to describe atomic cores
 - PBE-GGA exchange-correlation functional
 - 0.25/Å gamma-centered Monkhorst-Pack \(k \)-point mesh

- Bader Method to assign local properties
Hydrogen in Niobium

- The niobium – hydrogen phase diagram is very complex
 - \(\alpha, \alpha' \) – interstitial hydrogen dispersed in bcc niobium
 - \(\beta, \epsilon \) – ordered hydrogen interstitials in fcc niobium
 - \(\delta \) – ordered hydrogen interstitials in fluorite structure
 - \(\lambda, \lambda_c \) – experimentally unconfirmed phases

- What do we have in SRF cavities and how is it affected by processing?

Hydrogen in Niobium Phase Models

\[\alpha \quad \alpha' \quad \varepsilon \quad \beta \]

Energy difference between phase and isolated interstitial hydrogen (eV)

Unit cell deformation (\(\Delta a/a\))

- Disordered Interstitial H in bcc Nb
- Ordered Interstitial H in bcc Nb
- Epsilon Niobium Hydride
- Beta Niobium Hydride

\[y = 0.0468x + 0.0024 \quad R^2 = 0.9994 \]

\[y = 0.0565x - 0.0000 \quad R^2 = 0.9994 \]
Hydrogen in Niobium
How do Phases Form?

- 3 H₂ gas phase
- 6 H in bcc Nb interstices
- move one H into vacancy
- move four H into vacancy
- move six H into vacancy
- formation of β-phase
- formation of ε-phase

Energy (eV)

vacancy formation
Application to SRF Cavities

• Hydrogen in niobium could be a source of Q-slope and Q-disease.
 • Ordered hydride phases suffer from a greatly reduced superconducting T_c
 • Does the size of the precipitate matter? Large precipitates -> Q-disease; small precipitates, interstitial hydrogen -> Q-slope?

• Niobium hydride phase modeling showed
 • The driving forces for phase formation are evident in both lattice strain and energetic analyses of the presented models
 • Niobium lattice point defects can serve as nucleation centers for phase formation
Other Impurities in Niobium Oxide Layers

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb – cubic</td>
<td>Cubic</td>
<td>3.3 Å; 90°</td>
</tr>
<tr>
<td>NbO – cubic</td>
<td>Cubic</td>
<td>4.2 Å; 90°</td>
</tr>
<tr>
<td>NbO₂ – tetragonal</td>
<td>Tetragonal</td>
<td>9.7, 9.7, 6.0 Å; 90°</td>
</tr>
<tr>
<td>Nb₂O₅ – monoclinic</td>
<td>Monoclinic</td>
<td>20.7, 3.8, 19.6 Å; 90, 65, 90°</td>
</tr>
</tbody>
</table>

- Thermodynamic ordering of oxide layers on the niobium surface
- Strained and defective interfaces
- Surface layer can be highly defective or amorphous
- Interfaces can be trapping centers for other impurities such as H
Other Impurities in Niobium
Relation to Hydrogen

- Tetrahedral absorption (H)
- Octahedral absorption (C,N,O)
- Increased binding energy
- Reduced lattice strain

Graph showing the relationship between lattice strain energy and binding energy, with specific points for isolated interstitial H and O, interstitial O and H in a vacancy, and interstitial H and O in a vacancy.
Application to SRF Cavities

- The success of the 120 °C bake may be related to the interaction between impurities and lattice defects.

- Suggested mechanism:
 - Hydrogen is liberated from both the ordered hydride phases and the niobium site vacancies
 - Hydrogen diffuses into the niobium bulk
 - Some oxygen diffuses from the oxide phases or niobium interstitial sites and becomes trapped by the niobium vacancies in the near surface region
 - Hydrogen is prevented from returning to those phase nucleation centers
 - Hydrogen may also become trapped by sites in the niobium bulk
Oxygen in Niobium
An Additional Concern

Create a chain of oxygen vacancies (1.4%)
Summary

- **Hydrogen in Niobium**
 - Phase properties and driving forces for phase formation
 - Nucleation of phases by niobium lattice defects
 -> Removal of nucleation sites -> prevention of hydrides

- **Other impurities (O, N, C) in Niobium**
 - Oxide structures
 - Interactions between impurities and the niobium lattice during the 120 °C bake
 -> dissociation/prevention of hydrides
 - Magnetism in defective oxides
Acknowledgments

- Lance Cooley and Superconducting Materials Group members
- David Seidman and group members
- Computing resources at Fermilab
Hydrogen in Niobium
Electron and Phonon States

<table>
<thead>
<tr>
<th>Nb</th>
<th>E_F (eV)</th>
<th>DOS @ E_F (states/eV)</th>
<th>$<\omega>_{log}$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>4.78</td>
<td>0.13</td>
<td>28.5</td>
</tr>
<tr>
<td>α'</td>
<td>4.73</td>
<td>0.09</td>
<td>42.6</td>
</tr>
<tr>
<td>ε</td>
<td>4.88</td>
<td>0.03</td>
<td>62.2</td>
</tr>
<tr>
<td>β</td>
<td>5.24</td>
<td>0.04</td>
<td>69.4</td>
</tr>
</tbody>
</table>

Denise Ford
Fermilab, Northwestern University
July 16, 2012
The highest, lowest, and average charges are shown.

The charge on Nb atoms increases with increasing H concentration.

The charge on the H atoms slightly decreases with increasing H concentration and is the lowest for the ordered phases.

The charges on the Nb and H atoms are ~ constant for the ordered phases and equal and opposite for the beta phase.
Interaction energy and self-trapping energy decrease with increasing H concentration; self-trapping energy is zero for the ordered configurations.

Lattice strain energy increases with increasing H concentration, is \(\sim \) equal for the disordered and ordered hydrogen configurations of the same concentration.