
Using the CLAS12 Analysis Framework to Analyze CLAS6 Data

Timothy B. Hayward

DPWG Meeting, June 15

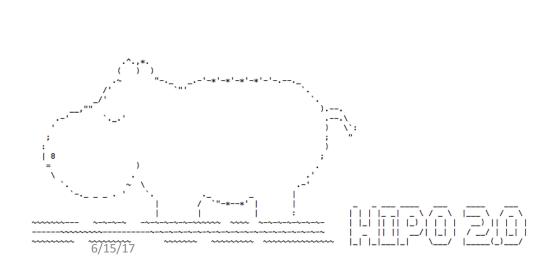
Looking for lepton-trident events ($e^- + p -> e^{-\prime} + e^- + e^+ + p'$).

Why Trident Spin Asymmetries

• Double spin asymmetries are known in terms of the form factors for the elastic scattering region.

• As CLAS moves to 12 GeV, there is concern about rates of elastic scattering events.

Goals

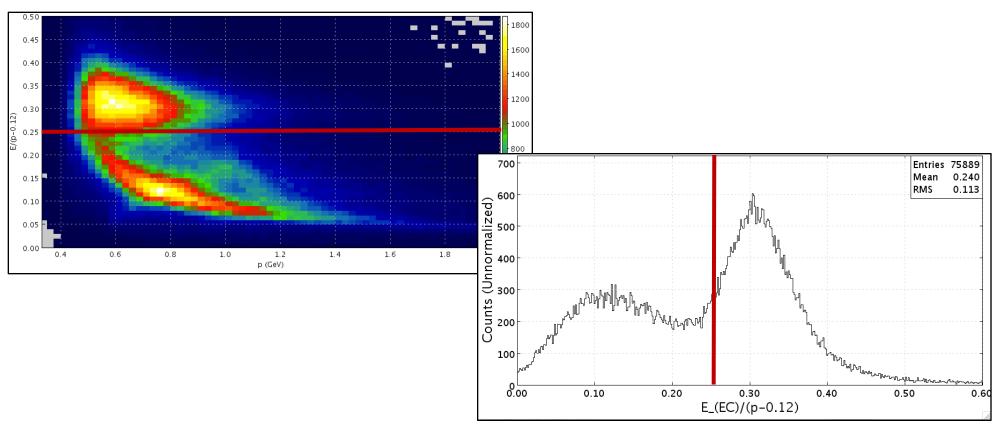

- Be the first to use CLAS12 software to analyze CLAS6 data. (A learning process!)
- Use CLAS12 software to develop kinematic fitter based on previously developed cuts to pick out trident events from eg1dvcs data.
- Write a Java class responsible for the analysis routine.

```
public static void main(String[] args) {
 HipoDataSource reader = new HipoDataSource();
  reader.open("/volatile/clas12/thayward/eg1dvcs_data/temp/hipo/run_58799_pass1.a00");
 GenericKinematicFitter fitter = new fitter_A(5.887);
 EventFilter filter = new EventFilter("11:2212");
 while(reader.hasEvent()==true){
     HipoDataEvent event = reader getNextEvent();
     PhysicsEvent recEvent = fitter getPhysicsEvent(event);
      if(filter isValid(recEvent)==true){
         Particle mx = recEvent.getParticle("[b]+[t]-[11]-[2212]");
         System out println(mx e());
```

```
public static void main(String[] args) {
 HipoDataSource reader = new HipoDataSource();
  reader open("/volatile/clas12/thayward/eg1dvcs_data/temp/hipo/run_58799_pass1.a00");
 GenericKinematicFitter fitter = new fitter_A(5.887);
 EventFilter filter = new EventFilter("11:2212");
 while(reader.hasEvent()==true){
     HipoDataEvent event = reader getNextEvent();
     PhysicsEvent recEvent = fitter getPhysicsEvent(event);
      if(filter isValid(recEvent)==true){
          Particle mx = recEvent.getParticle("[b]+[t]-[11]-[2212]");
         System out println(mx e());
```

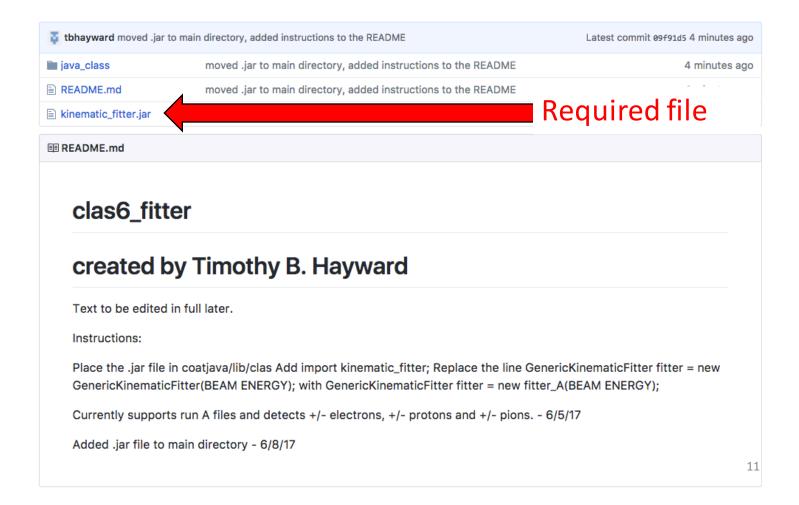
CLAS12 software uses new data compression .hipo files.

Old CLAS6 .bos files are stored on tape and must be converted.


/mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a00 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run_58799_pass1.a01 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a02 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run 58799 pass1.a03 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a04 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run 58799 pass1.a05 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a06 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a07 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a08 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a09 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a10 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a11 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a12 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a13 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a14 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a15 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a16 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run_58799_pass1.a20 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a21 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a22 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a23 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a24 /mss/clas/eg1dvcs/production/pass1/v3/data/main/run_58799_pass1.a25 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run 58799 pass1.a26 /mss/clas/eq1dvcs/production/pass1/v3/data/main/run_587997pass1.a27

```
public static void main(String[] args) {
 HipoDataSource reader = new HipoDataSource();
  reader open("/volatile/clas12/thayward/eg1dvcs_data/temp/hipo/run_58799_pass1.a00");
 GenericKinematicFitter fitter = new fitter_A(5.887);
 EventFilter filter = new EventFilter("11:2212");
 while(reader.hasEvent()==true){
     HipoDataEvent event = reader_getNextEvent();
     PhysicsEvent recEvent = fitter getPhysicsEvent(event);
      if(filter isValid(recEvent)==true){
          Particle mx = recEvent.getParticle("[b]+[t]-[11]-[2212]");
          System out println(mx e());
```

- With the latest build, all relevant CLAS6 detector information is available for perusal with the CLAS12 software.
- Each analysis group can develop their own Kinematic Fitter.


```
<bank name="DETECTOR" tag="23000" info="detector banks">
<section name="ecpb" tag="23001" info="EC detector bank">
  <column name="sector"</pre>
                           type="int8"
                                           num="1"
                                                     info="hit sector"/>
  <column name="etot"
                           type="float32"
                                           num="2"
                                                     info="total energy of the hit"/>
  <column name="ein"
                           type="float32"
                                           num="3"
                                                     info="inner energy of the hit"/>
  <column name="eout"
                           type="float32"
                                           num="4"
                                                     info="outter energy of the hit"/>
  <column name="time"
                           type="float32"
                                                     info="time of the hit"/>
                                           num="5"
  <column name="path"
                           type="float32"
                                           num="6"
                                                     info="path of the hit"/>
                           type="float32"
  <column name="x"
                                           num="7"
                                                     info="x coordinate of the hit"/>
  <column name="y"
                           type="float32"
                                           num="8"
                                                     info="y coordinate of the hit"/>
  <column name="z"
                                           num="9"
                           type="float32"
                                                     info="z coordinate of the hit"/>
</section>
```

Positron Cuts – EC Energy

Energy deposited in EC divided by momentum with 0.12 GeV offset to account for energy loss by positron throughout detectors. Good positrons required to have $E_(EC)/(p-0.12) > 0.25$.

Compiled fitter jar file available at github.com/tbhayward/clas6_fitter


```
public static void main(String[] args) {
 HipoDataSource reader = new HipoDataSource();
  reader open("/volatile/clas12/thayward/eg1dvcs_data/temp/hipo/run_58799_pass1.a00");
 GenericKinematicFitter fitter = new fitter_A(5.887);
 EventFilter filter = new EventFilter("11:2212");
 while(reader.hasEvent()==true){
     HipoDataEvent event = reader getNextEvent();
     PhysicsEvent recEvent = fitter getPhysicsEvent(event);
      if(filter isValid(recEvent)==true){
          Particle mx = recEvent.getParticle("[b]+[t]-[11]-[2212]");
          System.out.println(mx.e());
```

```
public static void main(String[] args) {
 HipoDataSource reader = new HipoDataSource();
  reader open("/volatile/clas12/thayward/eg1dvcs_data/temp/hipo/run_58799_pass1.a00");
 GenericKinematicFitter fitter = new fitter_A(5.887);
 EventFilter filter = new EventFilter("11:2212");
 while(reader.hasEvent()==true){
     HipoDataEvent event = reader getNextEvent();
     PhysicsEvent recEvent = fitter getPhysicsEvent(event);
      if(filter isValid(recEvent)==true){
          Particle mx = recEvent.getParticle("[b]+[t]-[11]-[2212]");
         System.out.println(mx.e());
```

Summary

• All relevant CLAS6 banks and event information included in the bos2hipo converter.

 Now possible to analyze CLAS6 data using the new CLAS12 Java framework.

• Contact: tbhayward@email.wm.edu