Photoproduction of 3π with CLAS

P. Eugenio
Florida State University
CLAS g12 Analysis

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

Form CLAS-g12 dataset (~25B events):

- **Three** charged pions selected
- **Neutron** is identified by energy and momentum conservation

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

Form CLAS-g12 dataset (~25B events):

- **Four** charged pions selected
- **Proton** is identified by energy and momentum conservation

Partial Wave Analysis in the \(3\pi\) sample

A. Tsaris (2016 FSU Dissertation)
Selection Criteria

<table>
<thead>
<tr>
<th>Description</th>
<th>Interval</th>
<th>Events In</th>
<th>Events Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex within z-extent of target</td>
<td>$-110 < z < -70$ cm</td>
<td>707,329,219</td>
<td>658,403,589</td>
</tr>
<tr>
<td>Vertex within target radius</td>
<td>$r < 10.0$ cm</td>
<td>658,403,589</td>
<td>587,508,335</td>
</tr>
<tr>
<td>Event vertex timing cut</td>
<td>$</td>
<td>t_{vtx}(TAG) - t_{vtx}(ST)</td>
<td>< 1.002$ ns</td>
</tr>
<tr>
<td>Beta selection for particle tracks</td>
<td>$</td>
<td>\beta_{TOF} - \beta_{p/m}</td>
<td>< 0.03$</td>
</tr>
<tr>
<td>Photon Energy</td>
<td>$E_\gamma \geq 4.4 GeV$</td>
<td>382,907,980</td>
<td>118,656,025</td>
</tr>
<tr>
<td>Confidence level cut</td>
<td>$FOMkinFit > 1%$</td>
<td>118,656,025</td>
<td>7,424,941</td>
</tr>
</tbody>
</table>

\[\gamma p \rightarrow n \pi^- \pi^+ \pi^+ X \]
Features of the Data

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

Features for \(M_{3\pi} < 1.5 \text{GeV} \):

- **Histogram:** Mass distribution of \(\pi^+ \pi^+ \pi^- \)
- **Scatter Plot:** \(M^2(\pi^- , \pi_{\text{fast}}^-) \)

Features for \(M_{3\pi} > 1.5 \text{GeV} \):

- **Histogram:** Mass distribution of \(\pi^- \pi_{\text{slow}}^- \) and \(\pi^- \pi_{\text{fast}}^- \)
- **Scatter Plot:** \(M^2(\pi^- , \pi_{\text{fast}}^-) \)
Partial Wave Analysis

Step 1: Decompose to Partial Waves

\[
X \rightarrow p_1 + p_2 + p_3 + \ldots
\]

Bin by bin event based likelihood analysis

<table>
<thead>
<tr>
<th>Mass [X]</th>
<th>Total Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\beta) Intensity</td>
</tr>
<tr>
<td></td>
<td>Relative Phase ([\alpha, \beta])</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mass [X]</th>
<th>Wave((\alpha)) Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wave((\beta)) Intensity</td>
</tr>
</tbody>
</table>

\[\text{Mass}[X] \rightarrow p_1 + p_2 + p_3 + \ldots\]
Partial Wave Analysis

Step 1: Decompose to Partial Waves

\[X \rightarrow p_1 + p_2 + p_3 + \ldots \]

Bin by bin
event based
likelihood analysis
Partial Wave Analysis

Step 2: Extract Resonance Parameters

- Mass\[X\]
- Total Intensity
- Relative Phase\[\alpha, \beta\]
- Wave(\alpha) Intensity
- Wave(\beta) Intensity

Mass Dependent Analysis
Using PWA to Identify J^{PC} States

Helicity Decay Amplitudes

$A_{\alpha, M}(\tau) = A^{\lambda_1 \lambda_2; M}_{\alpha X} A^{\nu_1 \nu_2; \lambda_1}_{iso}$

Mass Dynamic Factor

(like Breit-Wigner, K-matrix, ...)
Helicity Decay Amplitudes in the Reflectivity Basis

For unpolarized beam & target:

\[I(\tau) = \frac{1}{2} \sum_{k} \left| \sum_{\alpha}^{k\epsilon} V_{\alpha} \epsilon A_{\alpha}(\tau) \right|^2 \]

\[\tau = \{ \theta, \phi, m_{iso}, \theta', \phi', ... \} \]

Helicity amplitudes are not eigenstates of Parity

Reflectivity basis takes Parity into account

\[A_{\alpha,\epsilon M}^*(\tau) = \Delta(m) [A_{\alpha, m}^*(\tau) - \epsilon P (-1)^{J-m} A_{\alpha, -m}^*(\tau)] \]

- Unpolarized photon beam results in equal mixture of \(M^\epsilon = 1^+ \) & \(1^- \)

- \(\pi \) exchange photoproduction forbids \(M=0 \)

\[\Delta(m) = \begin{cases} 1/\sqrt{2} & m > 0 \\ 1/2 & m = 0 \\ 0 & m < 0 \end{cases} \]
Earlier FSU Results*

\[2^{-+} \left[f_2(1270) \pi \right]_S \text{ Intensity} \]

\[\times 10^5 \]

\[\pi_2(1670) \]

Equal yields for \(M^e = 1^+ \) & \(1^- \)

* Large signal in M=0 wave

Did not expect M=0 waves to contribute

*C. Bookwalter (FSU Dissertation)
Minimum List of Partial Waves

$M_{3\pi} < 1.4\,\text{GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^c</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), \sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic background wave

$M_{3\pi} > 1.38\,\text{GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^c</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1^{++}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), \sigma$</td>
<td>6</td>
</tr>
<tr>
<td>1^{-+}</td>
<td>$1^{-/+}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{++}</td>
<td>$1^{-/+}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2^{-+}</td>
<td>$1^{-/+}$</td>
<td>S, P, D</td>
<td>$\rho(770), f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic background wave
PWA Results: $n\pi^+ \pi^+ \pi^-$

First observation of the $a_1(1260)$ in photoproduction

- Equal population of both parity eigenstates
- No observation in $M=0$ wave

$\Delta \phi$

A. Tsaris (2016 FSU Dissertation)
\(\pi_2(1670) \) & Non-resonant 1\(^{-+} \) wave

\[\gamma p \rightarrow n \, \pi^+ \pi^+ \pi^- \]

\(\pi_2(1670) \)

Intensity of 2\(^{-+} \) S waves

\(M = 1.634 \pm 0.002 \)

\(\Gamma = 0.252 \pm 0.005 \)

\(\chi^2/\text{DoF} = 6 \)

Intensity of 1\(^{-+} \) P waves

\(M(3\pi) \) (GeV/c\(^2\))

Phase difference between 1\(^{-+} \) P and 2\(^{-+} \) S waves

Phase difference between 2\(^{-+} \) S and a resonating 1\(^{-+} \) P wave

Pure 2\(^{-+} \) S phase motion

The exotic 1\(^{-+} \) partial wave does not show resonant behavior
\(\pi_2(1670) \) D-wave decay

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

![Graphs showing intensity and phase differences between different wave states](image)

- Graph (a) shows the intensity of 2-+ D waves as a function of mass.
- Graphs (b) and (c) show the phase difference between 1-+1-P and 2-+1-D waves.

- Phase motion was not stable in earlier FSU results.

Also a falling phase motion consistent with a non-resonant 1-+
\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

Event Selection

<table>
<thead>
<tr>
<th>Description</th>
<th>Interval</th>
<th>Events In</th>
<th>Events Selected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex within (z)-extent of target</td>
<td>(-110 < z < -70) cm</td>
<td>105,863,100</td>
<td>100,840,300</td>
</tr>
<tr>
<td>Vertex within target radius</td>
<td>(r < 10.0) cm</td>
<td>100,840,300</td>
<td>93,575,180</td>
</tr>
<tr>
<td>Event vertex timing cut</td>
<td>(</td>
<td>t_{vtx}(TAG) - t_{vtx}(ST)</td>
<td>< 1.002) ns</td>
</tr>
<tr>
<td>Beta selection for particle tracks</td>
<td>(</td>
<td>\beta_{TOF} - \beta_{p/m}</td>
<td>< 0.03)</td>
</tr>
<tr>
<td>Photon Energy</td>
<td>Beam - Photon (\geq 4.4 GeV)</td>
<td>75,917,040</td>
<td>31,874,591</td>
</tr>
<tr>
<td>Confidence level cut</td>
<td>(FOM - kinFit > 1%)</td>
<td>31,874,591</td>
<td>3,750,040</td>
</tr>
</tbody>
</table>

![Graphs showing event selection criteria](image_url)
Kinematic Separation of the Δ⁺⁺

Momentum Difference between fast and slow π^+

Background Δ^{++}

Signal Δ^{++}

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

\[\Delta^{++} \]

\[M(p, \pi^+) \quad (GeV/c^2) \]

\[M(p, \pi^{slow}) \quad (GeV/c^2) \]
Data Selection & Background Reduction

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

+ \(M_{p \pi_{\text{slow}}^+} < 1.35 \)

\(t' \) (GeV/c\(^2\))^2

Events/40 (MeV/c\(^2\))^2

- 45000
- 40000
- 35000
- 30000
- 25000
- 20000
- 15000
- 10000
- 5000
- 0

< 0.4

Mass(\(p, \pi_{\text{fast}}^+ \)) (GeV/c\(^2\))

Events/18 (MeV/c\(^2\))

- 50000
- 40000
- 30000
- 20000
- 10000
- 0

Black → Data
Red → Data with Cuts
Blue → MC with Cuts

Mass(\(p \pi_{\text{slow}}^+ \pi_{\text{slow}}^- \)) (GeV/c\(^2\))

Events/12 (MeV/c\(^2\))

- 45000
- 40000
- 35000
- 30000
- 25000
- 20000
- 15000
- 10000
- 5000
- 0

Mass(\(p, \pi_{\text{fast}}^- \)) (GeV/c\(^2\))

Events/12 (MeV/c\(^2\))

- 45000
- 40000
- 35000
- 30000
- 25000
- 20000
- 15000
- 10000
- 5000
- 0

Mass(\(\pi_{\text{slow}}^- \pi_{\text{slow}}^- \)) (GeV/c\(^2\))

Events/12 (MeV/c\(^2\))

- 45000
- 40000
- 35000
- 30000
- 25000
- 20000
- 15000
- 10000
- 5000
- 0
The Δ^{++} Recoil Baryon

Fitted with a mass dependent Breit-Wigner function convoluted with a Gaussian along with a first degree polynomial function.

$\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

$\cos \theta$ in the Δ^{++} rest frame for data and accepted MC weighted by Δ^{++} amplitudes.
Features of the 3π sample

$\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

$M_{3\pi} < 1.5 \text{ GeV}$

$M_{3\pi} > 1.5 \text{ GeV}$
PWA Results: \(\Delta^{++} \pi^+ \pi^- \pi^- \)

Confirmation of the \(a_1(1260) \) in photoproduction

- PWA results:
 - \(a_2(1320) \)
 - \(a_1(1260) \)

1\(^+\) exotic wave was not required

Deck free background
Features of the PWA

PWA in the high mass region:
- was more challenging
- results were less stable here
- further investigation in this region shows that this channel suffers from background

\(\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \)
Investigating the high 3π mass region
Summary & Plans

- \(\gamma p \rightarrow n \pi^+ \pi^+ \pi^- : \)
 - The \(a_2(1320) \) and the \(a_1(1260) \) are observed
 - The \(\pi_2(1670) \) is observed
 - The \(J^{PC} = 1^{++} \) does not show resonant behavior and it is strongly consistent with a non-resonant non-interfering wave relative to a resonant \(\pi_2(1670) \)

- \(\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- : \)
 - A first time PWA of the \(\Delta^{++}3\pi \) system
 - The \(a_2(1320) \) and the \(a_1(1260) \) are observed
 - The \(\pi_2(1670) \) is observed

- Analysis Review is underway:
 - written draft PRL for \(n3\pi \)
 - writing longer paper to include details of \(n3p \) and \(\Delta^{++}3\pi \)
PWA Predicted Distributions

\[\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^- \]

GJ $\cos \theta$ (fast Y)

GJ ϕ (fast Y) (deg)

GJ $\cos \theta$ (slow Y)

GJ ϕ (slow Y) (deg)
Minimum List of Waves Required for the $\gamma p \rightarrow \Delta^{++} \pi^+ \pi^- \pi^-$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^c</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^{++}$</td>
<td>1$^{-/-}$</td>
<td>S, D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2$^{++}$</td>
<td>1$^{-/-}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2$^{-+}$</td>
<td>1$^{-/-}$</td>
<td>P</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
</tbody>
</table>

Isotropic Background Wave

$M_{3\pi} < 1.4\text{ GeV}$

$M_{3\pi} > 1.375\text{ GeV}$

<table>
<thead>
<tr>
<th>J^{PC}</th>
<th>M^c</th>
<th>L</th>
<th>Y</th>
<th>Number of waves</th>
</tr>
</thead>
<tbody>
<tr>
<td>1$^{++}$</td>
<td>1$^{-/-}$</td>
<td>S, D</td>
<td>$\rho(770)$</td>
<td>4</td>
</tr>
<tr>
<td>2$^{++}$</td>
<td>1$^{-/-}$</td>
<td>D</td>
<td>$\rho(770)$</td>
<td>2</td>
</tr>
<tr>
<td>2$^{-+}$</td>
<td>1$^{-/-}$</td>
<td>S, P, D</td>
<td>$\rho(770), f_2(1270)$</td>
<td>6</td>
</tr>
</tbody>
</table>

Isotropic Background Wave
Enhance Peripheral Production

\[\gamma p \rightarrow n \pi^+ \pi^+ \pi^- \]

\[t = (P_\gamma^\mu - P_X^\mu)^2 \]
\[t' = t - t_{\min} \]

\(< 0.1\)
Further Reducing the Baryon Background

\[\theta_{lab}[\pi_{\text{slow}}] < 25^\circ \]