g_{13} \gamma n \rightarrow p\pi^- \text{ Differential Cross Section, } N^* \text{ Amplitudes}

Paul Mattione, Jefferson Science Associates
N* Predictions: Quark Model

* Predictions: Capstick, Isgur†
 * Relativized quark model
 * States organized by J\(^p\)
 * Agrees well with lattice predictions below 2 GeV

* Many states missing, many others poorly understood

†S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)

Legend
Black: Certain or likely: ****, ***
Blue: Fair or poor: **, *
Red: No evidence
N* Predictions: Quark Model

* Predictions: Capstick, Isgur†
 * Relativized quark model
 * States organized by J^P
 * Agrees well with lattice predictions below 2 GeV

* Many states missing, many others poorly understood

* Diquarks?

Legend
Black: Certain or likely: ****, ***
Blue: Fair or poor: **, *
Red: No evidence

†S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986)
\(\gamma p \) vs. \(\gamma n \), Isospin

* For N* couplings to \(\gamma N \), important to study both \(\gamma p \) & \(\gamma n \)

 * Disentangle Isoscalar (\(A^S \)), isovector (\(A^V \)) EM amplitudes\(^\dagger\)

* \(\gamma N \rightarrow \pi N \): Primary \(\gamma N \) channel in resonance region

 * 4 possible reactions (below)

 * SAID: Sparse \(\gamma n \rightarrow \pi N \) data (3500 points) vs. \(\gamma p \rightarrow \pi N \) (35400)

\[
A_{\gamma p \rightarrow \pi^+ n} = \sqrt{\frac{1}{3}} A^V_{I=3/2} - \sqrt{\frac{2}{3}} (A^V - A^S)_{I=1/2}
\]

\[
A_{\gamma n \rightarrow \pi^- p} = \sqrt{\frac{1}{3}} A^V_{I=3/2} - \sqrt{\frac{2}{3}} (A^V + A^S)_{I=1/2}
\]

\[
A_{\gamma p \rightarrow \pi^0 p} = \sqrt{\frac{2}{3}} A^V_{I=3/2} + \sqrt{\frac{1}{3}} (A^V - A^S)_{I=1/2}
\]

\[
A_{\gamma n \rightarrow \pi^0 n} = \sqrt{\frac{2}{3}} A^V_{I=3/2} + \sqrt{\frac{1}{3}} (A^V + A^S)_{I=1/2}
\]

\(^\dagger\)R. L. Walker, Phys. Rev. 182, 1729 (1969)

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
CLAS g13 Experiment

- g13 experiment: 2006 – 2007, LD$_2$ target
- Analysis (g13a): $E_{e^-} = 2.655, 1.990$ GeV
Final-State Interactions in γd

* γn: No free neutron targets
 * Deuteron target: Isotropic Fermi-motion, final-state interactions (FSI)
 * Correct for FSI to extract γn cross sections from γd measurements

* On γd, measure “quasi-free” (QF) differential cross sections
 * QF: Cut (FSI) events with missing-$p > 200$ MeV$/c$
 * FSI corrections: Model-dependent fit to data†

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)
Reconstructed Kinematics

- Track distributions: Detector was aging
- Needed more sophisticated CLAS efficiency studies
π⁻ Triggering Efficiency

* g13: 2-sector trigger (Start-Counter x TOF)

* Study γd → ppπ⁻ events, when each track in different sector
 * Each track pair: If both fired trigger signal, study 3rd-track signal rate
π⁻ Triggering Efficiency

* g13: 2-sector trigger (Start-Counter x TOF)

* Study γd → pπ⁻ events, when each track in different sector
 * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 * Function of particle type, p, TOF scintillator, φ

Overlap between TOF panels: Forward carriage, N/S clamshells
π⁻ Triggering Efficiency

* g13: 2-sector trigger (Start-Counter x TOF)

* Study γd → pπ⁻ events, when each track in different sector
 * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 * Function of particle type, p, TOF scintillator, φ

* TOF thresholds: Readout = 20 mV, pre-trigger = 100 mV
 * g13 weak PMTs: Set to max voltage, gain often still too low

Overlap between TOF panels: Forward carriage, N/S clamshells
Compare Experiment, MC: \(\pi^- \)

* \(\gamma d \rightarrow p\pi^-(p) \) distributions match pretty closely
Modeling FSI in $\gamma d \rightarrow pp\pi^-$

* Must correct for FSI to extract $\gamma n \rightarrow p\pi^-$ from QF $\gamma d \rightarrow pp\pi^-$
 * GWU & ITEP Moscow

* $\gamma d \rightarrow pp\pi^-$ amplitude: $M_{\gamma d} = M_{IA} + M_{NN} + M_{\pi N}$

* Leading terms: Impulse approximation (IA), NN FSI, πN FSI

* Fit constrained by SAID $\gamma N \rightarrow \pi N, NN \rightarrow NN, N\pi \rightarrow N\pi$

\[
\frac{d\sigma}{d\Omega}(\gamma n) = R(E_\gamma, \theta)^{-1} \frac{d\sigma}{d\Omega}(\gamma d)
\]

\[
R(E_\gamma, \theta) = M_{\gamma d}/M_{IA}
\]

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
FSI Correction Factor

* Correction† < 10% except at forward angles: pp-FSI dominates
 * When pp both slow, backwards: Maximal wave function overlap
 * π⁻ faster than p: Leaves d sooner: Less FSI

\[\frac{d\sigma}{d\Omega}(\gamma n) = R(E_\gamma, \theta)^{-1} \frac{d\sigma}{d\Omega}(\gamma d) \]

Uncertainties:
- \(E_\gamma < 1.8 \text{ GeV} \): 2%
- \(1.8 < E_\gamma < 2.7 \): 3%
- \(E_\gamma > 2.7 \text{ GeV} \): 5%

Legend
Solid: NN + πN FSI
Dash: NN FSI

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)

Paul Mattiome – CLAS Collaboration Meeting – June 14, 2017
γn → pπ⁻ Cross Section

* CLAS g13
 * 8424 bins, ≈ 400M events
 * 157 Eγ bins (10, 20 MeV)
 * W ≈ 1.31 – 2.37 GeV: N*'s
 * σ_{Total} typically 3.5% - 15%
 * σ_{Scale} ≈ 3.4% (not shown)

Legend

γn → pπ⁻: CLAS g13, CLAS g10, SLAC, DESY, MAMI-B, Frascati
π⁻p → γn: BNL, LBL, LAMPF
Fits (lines): SAID MA27, SAID PR15, BnGa 2014-02, MAID 2007

Peaks at low-Eγ: Δ(1232), N*'s
At higher Eγ, more channels

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
\(\gamma n \rightarrow p\pi^- \) Cross Section

* **CLAS g13**
 * 8424 bins, \(\approx 400M \) events
 * 157 \(E_\gamma \) bins (10, 20 MeV)
 * \(W \approx 1.31 - 2.37 \) GeV: N*’s
 * \(\sigma_{\text{Total}} \) typically 3.5% - 15%
 * \(\sigma_{\text{Scale}} \approx 3.4\% \) (not shown)

* **New SAID fit of data: MA27**
 * Previous fit: PR15
 * BnGa, MAID: Not fit to g13

Legend

\(\gamma n \rightarrow p\pi^- \): **CLAS g13, CLAS g10, SLAC, DESY, MAMI-B, Frascati**

\(\pi p \rightarrow \gamma n \): **BNL, LBL, LAMPF**

Fits (lines): **SAID MA27, SAID PR15 BnGa 2014-02, MAID 2007**

Peaks at low-\(E_\gamma \): \(\Delta(1232) \), N*’s
At higher \(E_\gamma \), more channels
\(\gamma n \rightarrow p\pi^- \) Cross Section

- Peak low-\(\theta \): t-channel \(\pi^- \)
- Low energies (\(E_\gamma \leq 1 \) GeV)
 - Much old, low-stats data
 - Some \(E_\gamma \):
 - \(g_{13} < \) BNL, DESY, Frascati
 - Low-\(\theta \), Low-\(E_\gamma \):
 - Different trend than SLAC
 - Otherwise good agreement

Legend
\(\gamma n \rightarrow p\pi^- \): CLAS g13, SLAC, DESY, MAMI-B, Frascati
\(\pi^- p \rightarrow \gamma n \): BNL, LBL, LAMPF
Fits (lines): SAID MA27, SAID PR15, BnGa 2014-02, MAID 2007
$\gamma n \rightarrow p\pi^-$ Cross Section

- CLAS g10
 - ≈ 850 bins, 1/10 g13
 - $34 E_\gamma$ bins (50, 100 MeV)
 - $\sigma_{\text{Scale}} \approx 12\%$ (not shown)
- High energies ($E_\gamma > 1$ GeV)
 - CLAS g10 systematically low
 - But has high σ_{Scale}
 - Overall excellent agreement

Legend

$\gamma n \rightarrow p\pi^-$: CLAS g13, CLAS g10, SLAC, DESY

Fits (lines): SAID MA27, SAID PR15, BnGa 2014-02, MAID 2007

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
SAID MA27 Fit

- Simultaneous fit to all 4 γN channels to extract EM multipoles
- SAID πN → πN amplitudes used to constrain γN → πN fits
- Also, resonance BW parameters fixed from πN fits

Legend

Black: PR15 vs. g13 w/o FSI correction
Blue: PR15 vs. g13 (χ^2/Data = 2.1)
Red: MA27 vs. g13 (χ^2/Data = 1.1)
SAID MA27 Fit

* Simultaneous fit to all 4 γN channels to extract EM multipoles
 * SAID πN → πN amplitudes used to constrain γN → πN fits
 * Also, resonance BW parameters fixed from πN fits

<table>
<thead>
<tr>
<th>Channel</th>
<th>SAID PR15 (no g13)</th>
<th>SAID MA27 (w/ g13)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td># Data</td>
<td>χ²/Data</td>
</tr>
<tr>
<td>γp → pn⁰</td>
<td>25540</td>
<td>2.15</td>
</tr>
<tr>
<td>γp → nn⁺</td>
<td>9859</td>
<td>2.39</td>
</tr>
<tr>
<td>γn → pn⁻</td>
<td>3162</td>
<td>2.07</td>
</tr>
<tr>
<td>γn → nn⁰</td>
<td>364</td>
<td>3.17</td>
</tr>
<tr>
<td>Sum</td>
<td>38927</td>
<td>2.22</td>
</tr>
</tbody>
</table>

Legend

Black: PR15 vs. g13 w/o FSI correction
Blue: PR15 vs. g13 (χ²/Data = 2.1)
Red: MA27 vs. g13 (χ²/Data = 1.1)
γn Multipole Amplitudes

* Where dominant resonance (N(1520)3/2⁻), all curves are similar.

* Where not (N(1720)3/2⁺ weak γn coupling), differences are starker.

Amplitude Notation: n(E/M)L⁺I

n: Neutron
E: Electric multipole (J⁺γ = 1⁻, 2⁺, 3⁻, …)
M: Magnetic multipole (J⁺γ = 1⁺, 2⁻, 3⁺, …)
L±: Jγn = L ± ½
I: Isospin
γn → N* Helicity Amplitudes

* Amplitudes at pole position (GeV^{-1/2}): First-ever determination†
* Previous attempts only extracted modulus

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Coupling</th>
<th>MA27 modulus, phase</th>
<th>GB12</th>
<th>BG2013</th>
<th>MAID2007</th>
<th>Capstick</th>
<th>PDG 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1440)1/2^+</td>
<td>A_{1/2}(n)</td>
<td>0.065±0.005, 5°±3°</td>
<td>0.048±0.004</td>
<td>-0.058±0.006</td>
<td>0.048±0.012</td>
<td>0.054</td>
<td>-0.006</td>
</tr>
<tr>
<td>N(1535)1/2^-</td>
<td>A_{1/2}(n)</td>
<td>-0.055±0.005, 5°±2°</td>
<td>-0.093±0.011</td>
<td>-0.051</td>
<td>-0.063</td>
<td>-0.075±0.020</td>
<td></td>
</tr>
<tr>
<td>N(1650)1/2^-</td>
<td>A_{1/2}(n)</td>
<td>0.014±0.002, -30°±10°</td>
<td>0.025±0.020</td>
<td>0.009</td>
<td>-0.035</td>
<td>-0.050±0.020</td>
<td></td>
</tr>
<tr>
<td>N(1720)3/2^+</td>
<td>A_{1/2}(n)</td>
<td>-0.016±0.006, 10°±5°</td>
<td>-0.080±0.050</td>
<td>-0.003</td>
<td>0.004</td>
<td>-0.080±0.050</td>
<td></td>
</tr>
<tr>
<td>N(1720)3/2^+</td>
<td>A_{3/2}(n)</td>
<td>0.017±0.005, 90°±10°</td>
<td>-0.140±0.065</td>
<td>-0.031</td>
<td>0.011</td>
<td>-0.140±0.065</td>
<td></td>
</tr>
</tbody>
</table>

γn → N* Helicity Amplitudes

* Amplitudes at pole position (GeV⁻¹/²): First-ever determination†

* Previous attempts only extracted modulus

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Coupling</th>
<th>MA27 modulus, phase</th>
<th>GB12</th>
<th>BG2013</th>
<th>MAID2007</th>
<th>Capstick</th>
<th>PDG 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>N(1440)1/2⁺</td>
<td>A₁/₂(𝑛)</td>
<td>0.065±0.005, 5°±3°</td>
<td>0.048±0.004</td>
<td>0.043±0.012</td>
<td>0.054</td>
<td>-0.006</td>
<td>0.040±0.010</td>
</tr>
<tr>
<td>N(1535)1/2⁻</td>
<td>A₁/₂(𝑛)</td>
<td>-0.055±0.005, 5°±2°</td>
<td>-0.058±0.006</td>
<td>-0.093±0.011</td>
<td>-0.051</td>
<td>-0.063</td>
<td>-0.075±0.020</td>
</tr>
<tr>
<td>N(1650)1/2⁻</td>
<td>A₁/₂(𝑛)</td>
<td>0.014±0.002, -30°±10°</td>
<td>-0.040±0.010</td>
<td>0.025±0.020</td>
<td>0.009</td>
<td>-0.035</td>
<td>-0.050±0.020</td>
</tr>
<tr>
<td>N(1720)3/2⁺</td>
<td>A₁/₂(𝑛)</td>
<td>-0.016±0.006, 10°±5°</td>
<td>-0.080±0.050</td>
<td>-0.003</td>
<td>0.004</td>
<td>0.004</td>
<td>-0.080±0.050</td>
</tr>
<tr>
<td>N(1720)3/2⁺</td>
<td>A₃/₂(𝑛)</td>
<td>0.017±0.005, 90°±10°</td>
<td>-0.140±0.065</td>
<td>-0.031</td>
<td>0.011</td>
<td>-0.140±0.065</td>
<td></td>
</tr>
</tbody>
</table>

* MA27 vs. SAID GB12: Large change for N(1650)

* MA27 vs. PDG & BG2013: Large differences, ~agree within σ’s

\[\gamma n \rightarrow N^* \text{ Helicity Amplitudes} \]

* Amplitudes at pole position (GeV\(^{-1/2}\)): First-ever determination
* Previous attempts only extracted modulus

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Coupling</th>
<th>MA27 modulus, phase</th>
<th>GB12</th>
<th>BG2013</th>
<th>MAID2007</th>
<th>Capstick</th>
<th>PDG 2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(1440)1/2^+)</td>
<td>(A_{1/2}(n))</td>
<td>0.065±0.005, 5°±3°</td>
<td>0.048±0.004</td>
<td>0.043±0.012</td>
<td>0.054</td>
<td>-0.006</td>
<td>0.040±0.010</td>
</tr>
<tr>
<td>(N(1535)1/2^-)</td>
<td>(A_{1/2}(n))</td>
<td>-0.055±0.005, 5°±2°</td>
<td>-0.058±0.006</td>
<td>-0.093±0.011</td>
<td>-0.051</td>
<td>-0.063</td>
<td>-0.075±0.020</td>
</tr>
<tr>
<td>(N(1650)1/2^-)</td>
<td>(A_{1/2}(n))</td>
<td>0.014±0.002, -30°±10°</td>
<td>-0.040±0.010</td>
<td>0.025±0.020</td>
<td>0.009</td>
<td>-0.035</td>
<td>-0.050±0.020</td>
</tr>
<tr>
<td>(N(1720)3/2^+)</td>
<td>(A_{1/2}(n))</td>
<td>-0.016±0.006, 10°±5°</td>
<td>-0.080±0.050</td>
<td>-0.080±0.050</td>
<td>-0.003</td>
<td>0.004</td>
<td>-0.080±0.050</td>
</tr>
<tr>
<td>(N(1720)3/2^+)</td>
<td>(A_{3/2}(n))</td>
<td>0.017±0.005, 90°±10°</td>
<td>-0.140±0.065</td>
<td>-0.140±0.065</td>
<td>-0.031</td>
<td>0.011</td>
<td>-0.140±0.065</td>
</tr>
</tbody>
</table>

* Modulus uncertainties dramatically reduced:

\[% \text{Uncertainty (Modulus)}\]

<table>
<thead>
<tr>
<th>Resonance</th>
<th>Coupling</th>
<th>GB12</th>
<th>BG2013</th>
<th>PDG 2016</th>
<th>MA27</th>
</tr>
</thead>
<tbody>
<tr>
<td>(N(1440)1/2^+)</td>
<td>(A_{1/2}(n))</td>
<td>8.3%</td>
<td>28%</td>
<td>25%</td>
<td>7.7%</td>
</tr>
<tr>
<td>(N(1535)1/2^-)</td>
<td>(A_{1/2}(n))</td>
<td>10%</td>
<td>12%</td>
<td>27%</td>
<td>9.1%</td>
</tr>
<tr>
<td>(N(1650)1/2^-)</td>
<td>(A_{1/2}(n))</td>
<td>25%</td>
<td>80%</td>
<td>40%</td>
<td>14%</td>
</tr>
<tr>
<td>(N(1720)3/2^+)</td>
<td>(A_{1/2}(n))</td>
<td>62%</td>
<td>62%</td>
<td>62%</td>
<td>38%</td>
</tr>
<tr>
<td>(N(1720)3/2^+)</td>
<td>(A_{3/2}(n))</td>
<td>46%</td>
<td>46%</td>
<td>46%</td>
<td>29%</td>
</tr>
</tbody>
</table>
Summary & Outlook

- N* spectrum: Strong force and hadronic structure
- Role of quark correlations in the nucleon
- Need both γp and γn: Isospin decomposition of amplitudes
Summary & Outlook

- N* spectrum: Strong force and hadronic structure
- Role of quark correlations in the nucleon
- Need both γp and γn: Isospin decomposition of amplitudes

- CLAS g13 γn → pπ⁻ differential cross sections:
- 8428 data points in 157 Eγ bins from 0.445 to 2.510 GeV
- 10x statistics of g10, 3x SAID database at these energies
- Precision measurement: 3.4% scale σ, 12% for g12
Summary & Outlook

* N* spectrum: Strong force and hadronic structure
 * Role of quark correlations in the nucleon
 * Need both γp and γn: Isospin decomposition of amplitudes

* CLAS g13 γn → pπ− differential cross sections:
 * 8428 data points in 157 Eγ bins from 0.445 to 2.510 GeV
 * 10x statistics of g10, 3x SAID database at these energies
 * Precision measurement: 3.4% scale σ, 12% for g12

* GWU SAID amplitude extraction:
 * EM multipoles extracted (MA27), g13 χ²/Data = 1.1
 * First-ever determination of γn → N* amplitudes
Summary & Outlook

* N* spectrum: Strong force and hadronic structure
 * Role of quark correlations in the nucleon
 * Need both γp and γn: Isospin decomposition of amplitudes

* CLAS g13 γn → pπ− differential cross sections:
 * 8428 data points in 157 $E_γ$ bins from 0.445 to 2.510 GeV
 * 10x statistics of g10, 3x SAID database at these energies
 * Precision measurement: 3.4% scale σ, 12% for g12

* GWU SAID amplitude extraction:
 * EM multipoles extracted (MA27), $g_{13} \chi^2$/Data = 1.1
 * First-ever determination of γn → N* amplitudes

* Missing N*’s: Need more precision data (especially polarized!)
Reference
N* and Δ Resonances

* PDG: 18 well-established (****) nucleon resonances: 11 N*'s, 7 Δ's
 * Most discovered through coupling to πN
 * Many wide, overlapping: Difficult to distinguish

* Measure spectra of N*'s, Δ's: Understanding of QCD in the baryon

Notation: \(L_{(2I)(2J)}(M) \)
L: Orbital angular momentum
I: Isospin
J: Spin
M: Mass

N*'s, Δ’s: \(2I = 1, 3 \)

Evidence for N* Resonances

- N* status: Particle Data Group†
 - 27 N* states (11 ****)
 - Most evidence in πN

- Much new evidence from γN
 - JLab (CLAS), SPring-8, ELSA, GRAAL, MAMI

Legend
****: Existence is certain
***: Existence is likely
**: Evidence is fair
*: Evidence is poor

†C. Patrignani et al. (PDG), Chin. Phys. C, 40, 100001 (2016)
N* Predictions: Diquark Model

* Alternative: Diquark model\(^\dagger\)
 * Correlated quark-pair
 * Less DF: Less N* states

* “Missing” N*’s
 * Quark correlations?
 * Or N*’s couple weakly to measured channels? (Nn)

* Measure spectrum of N*’s
 * Study QCD in baryons

γn \rightarrow pπ^-, Helicity

* γN \rightarrow N^* Amplitudes: Helicity-dependent, very large errors†
* g13: Measure γn \rightarrow pπ^- dσ/dΩ: Improve helicity amplitudes

\[\lambda = J \cdot \hat{p} = S \cdot \hat{p} \]

\[J_\gamma = 1, J_N = \frac{1}{2} \]

\[|\mathcal{M}_{\gamma N \rightarrow N\pi}|^2 \propto \sum_{\lambda_i \lambda_f} \sum_{J^P,L,S,\text{etc.}} A_{\gamma N \rightarrow N\pi}^2 \]

<table>
<thead>
<tr>
<th>N^* \rightarrow γN</th>
<th>(A^p_{\lambda=1/2})</th>
<th>(A^n_{\lambda=1/2})</th>
<th>(A^p_{\lambda=3/2})</th>
<th>(A^n_{\lambda=3/2})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N (1440) (\frac{1}{2}^+)</td>
<td>-0.060 ± 0.004</td>
<td>0.040 ± 0.010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (1520) (\frac{3}{2}^-)</td>
<td>-0.020 ± 0.005</td>
<td>-0.050 ± 0.010</td>
<td>0.140 ± 0.010</td>
<td>-0.115 ± 0.010</td>
</tr>
<tr>
<td>N (1535) (\frac{1}{2}^-)</td>
<td>0.115 ± 0.015</td>
<td>-0.075 ± 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (1650) (\frac{1}{2}^-)</td>
<td>0.045 ± 0.010</td>
<td>-0.050 ± 0.020</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N (1675) (\frac{5}{2}^-)</td>
<td>0.019 ± 0.008</td>
<td>-0.060 ± 0.005</td>
<td>0.020 ± 0.005</td>
<td>-0.085 ± 0.010</td>
</tr>
<tr>
<td>N (1680) (\frac{5}{2}^+)</td>
<td>-0.015 ± 0.006</td>
<td>0.029 ± 0.010</td>
<td>0.133 ± 0.012</td>
<td>-0.033 ± 0.009</td>
</tr>
</tbody>
</table>

†C. Patrignani et al. (PDG), Chin. Phys. C, 40, 100001 (2016)
Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
Polarization Observables

* Combination of polarized beams, targets, and recoil polarization:
 * 16 observables

* Provide spin-dependent constraints for N* extraction

<table>
<thead>
<tr>
<th>Photon Beam</th>
<th>Target and/or Recoil Polarization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neither</td>
</tr>
<tr>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Unpolarized</td>
<td>σ</td>
</tr>
<tr>
<td>Linearly Polarized</td>
<td>σ</td>
</tr>
<tr>
<td>Circularly Polarized</td>
<td>Cₓ</td>
</tr>
</tbody>
</table>

Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
Reconstruction Efficiencies

* Needed new, sophisticated reconstruction efficiency studies

* Select $\gamma d \rightarrow p\pi^-(p)$ events to study p, $\gamma d \rightarrow pp(\pi^-)$ to study π^-
 * Efficiency: See how often missing particles are reconstructed
 * Study how well simulation models CLAS efficiency
 * Function of particle type, p, θ, ϕ, vertex-z

Background present, small, ignored: Studying features
p Reconstruction Efficiency

- Efficiency: Low at edges, holes
- Cut: Where MC efficiency doesn’t match experiment
- Minimum $p = 330$ MeV/c
π⁻ Reconstruction Efficiency

- Efficiency: Low at edges, holes
- Cut: Where MC efficiency doesn’t match experiment
- Minimum $p = 100$ MeV/c
Proton Triggering Efficiency

* g13: 2-sector trigger (Start-Counter x TOF)

* Study $\gamma d \rightarrow p p \pi^-$ events, when each track in different sector
 * Each track pair: If both fired trigger signal, study 3rd-track signal rate
 * Function of particle type, p, TOF scintillator, φ

* Low efficiency for weak/dead TOF PMTs, TOF panel overlap
 * One PMT on each end of TOF scintillators

Overlap between TOF panels: Forward carriage, N/S clamshells
Triggering Efficiency: PMTs

* TOF thresholds: Readout = 20 mV, pre-trigger = 100 mV
* Left & right PMTs are summed for pre-trigger
* Weak PMTs: Set to max voltage, gain often still too low
* π’s worse than protons: Much less dE/dx in scintillators
* After study: Pre-trigger threshold reduced for g9b (FROST)

Thresholds set assuming MIP peak here (ADC – pedestal = 600)
Compare Experiment, MC: p

* After cuts: $\gamma d \rightarrow p\pi^-(p)$ distributions match VERY closely

* Need to regenerate MC with measured cross section (Used SAID)

Primary sources of holes: Triggering & drift chamber inefficiencies
†Modeling FSI in \(\gamma d \rightarrow pp\pi^- \)

* Must correct for FSI to extract \(\gamma n \rightarrow p\pi^- \) from QF \(\gamma d \rightarrow pp\pi^- \)
* Working with GWU & ITEP (Moscow)

* \(\gamma d \rightarrow pp\pi^- \) amplitude: \(\mathcal{M}_{\gamma d} = \mathcal{M}_{IA} + \mathcal{M}_{NN} + \mathcal{M}_{\pi N} \)

* Leading terms: Impulse approximation (IA), NN FSI, \(\pi N \) FSI

* Fit constrained by SAID \(\gamma N \rightarrow \pi N \), NN \(\rightarrow NN \), N\(\pi \rightarrow N\pi \)

* QF \(\gamma d \rightarrow pp\pi^- \): Slow proton is spectator: \(\mathcal{M}_{QF}^{\gamma d} = \mathcal{M}_{IA}^{(1)} \)

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)
Modeling FSI in $\gamma d \rightarrow pp\pi^-$

1st approximation: FSI \approx small & IA dominates: γn similar to QF

Relate $\gamma n \rightarrow p\pi^-$ to QF $\gamma d \rightarrow pp\pi^-$ via correction factors:

$$\frac{d\sigma_{QF}^{\gamma d}}{d\Omega}(E_\gamma, \theta) = f_n(p_{max}) \cdot R(E_\gamma, \theta) \cdot \frac{d\sigma_{\gamma n}}{d\Omega}(\overline{E_\gamma}, \theta)$$

Where $R = R_P R_{FSI}$ and:

- R_{FSI}: Corrects for FSI
- R_P: Corrects for difference between IA, QF
- $f_n(p_{max})$: \approx Fraction of n with $p < p_{max}$
 * $p_{max} = 200$ MeV/c

Note $\overline{E_\gamma} \approx E_\gamma$ and $\overline{\sigma_{\gamma n}} \approx \sigma_{\gamma n}$ at low p_{max}

Difference: Target $d \rightarrow$ target virtual-n, deuteron wave function

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)
Paul Mattione – CLAS Collaboration Meeting – June 14, 2017
Calculating $R, \gamma n \rightarrow p\pi^-$

* Set $R = 1$, compute $\sigma_{\gamma n}$ ($& M_{\gamma n}$) from quasi-free $\sigma_{\gamma d}$ data

* Calculate R from CGLN amplitudes, using $M_{\gamma n}$

* Re-compute $\sigma_{\gamma n}$, iterate until R converges

$$\frac{d\sigma_{\gamma d}^{QF}}{d\Omega}(E_\gamma, \theta) = f_n(p_{max}) R(E_\gamma, \theta) \frac{d\sigma_{\gamma n}}{d\Omega}(E_\gamma, \theta) \quad R = \frac{d\sigma_{\gamma d}}{d\Omega_1} \bigg/ \frac{d\sigma_{\gamma d}^{QF}}{d\Omega_1}$$

$$M_{\gamma d} = M_{IA} + M_{NN\text{ FSI}} + M_{\pi N\text{ FSI}} \quad M_{\gamma d}^{QF} = M_{IA}^{(1)}$$

†V. E. Tarasov et. al, Phys. Rev. C 84, 035203 (2011)