JPAC program for Hadron Spectroscopy

Alessandro Pilloni

Hadronic Physics with Lepton and Hadron Beams, JLab, September 5th, 2017
Hadron Spectroscopy

Data

Interpretations on the spectrum leads to understanding fundamental laws of nature

Fundamental properties, Model building
Hadron Spectroscopy

Data

Fundamental properties, Model building

Esposito, AP, Polosa, Phys. Rept. 668
Hadron Spectroscopy

Data

Fundamental properties, Model building

Esposito, AP, Polosa, Phys. Rept. 668
Hadron Spectroscopy

Improvement needed! With great statistics comes great responsibility!

Esposito, AP, Polosa, Phys. Rept. 668
Joint Physics Analysis Center

- **Joint effort** between **theorists** and **experimentalists** to work together to make the best use of the next generation of very precise data taken at JLab and in the world.
- Created in 2013 by JLab & IU agreement.
- It is engaged in **education** of further generations of hadron physics practitioners.

Effective Field Theories
- Analyticity+Unitarity
- Dispersion Relations
- Regge Theory

Insight on QCD dynamics
- Fundamental parameters
- Resonances, exotic states

Experiments
- CLAS, GlueX, BESIII, COMPASS, LHCb, BaBar, Belle II, KLOE, MAMI
- Lattice
Joint Physics Analysis Center

A. Jackura, N. Sherrill, G. Fox, T. Londergan (IU), E. Passemar, A. Szczepaniak (IU/JLab)
R. Workman (GWU), M. Döring (GWU/JLab)
V. Mathieu, V. Pauk, A. Pilloni, V. Mokeev (JLab)
P. Guo (Cal. State U.)

L. Bibzrycki, R. Kaminski (Krakow)
J. Nys (Ghent U.)
M. Mikhasenko (Bonn U.)
L. Dai (FZ Julich)
I. Danilkin, A. Hiller Blin (Mainz U.)
A. Celentano (INFN-GE)
M. Albaladejo (Valencia U.)

Students, Postdocs, Faculties

A. Pilloni – JPAC program for Hadron Spectroscopy
Interactive tools

- Completed projects are fully documented on interactive portals
- These include description on physics, conventions, formalism, etc.
- The web pages contain source codes with detailed explanation how to use them. Users can run codes online, change parameters, display results.

http://www.indiana.edu/~jpac/
S-Matrix principles

These are constraints the amplitudes have to satisfy, but do not fix the dynamics.

Resonances (QCD states) are poles in the unphysical Riemann sheets.

\[A(s, t) = \sum_l A_l(s) P_l(z_s) \]

Analyticity

\[A_l(s) = \lim_{\epsilon \to 0} A_l(s + i\epsilon) \]

Crossing

These are constraints the amplitudes have to satisfy, but do not fix the dynamics.

Resonances (QCD states) are poles in the unphysical Riemann sheets.

Unitarity
Three-Body Unitarity

The full implementation of three-body unitarity is a major step for understanding the states appearing in such final states

e.g. \(a_1(1260)^+ \to \pi^+\pi^-\pi^+, \pi_1(1400)^+ \to \pi^+\pi^-\pi^+, X(3872) \to D^0\overline{D^0}\pi^0 \)

We completed the proof of the Amado model, based on the isobar approximation and a Bethe-Salpeter ansatz for the amplitude

See M. Doring’s talk at 11:30am
Pole hunting

I sheet

Bound states on the real axis 1st sheet
Not-so-bound (virtual) states on the real axis 2nd sheet
Pole hunting

More complicated structure when more thresholds arise: two sheets for each new threshold

III sheet: usual resonances
IV sheet: cusps (virtual states)
One can test different parametrizations of the amplitude, which correspond to different singularities → different natures

\[Y \rightarrow D \]

Triangle rescattering, logarithmic branching point

- \(u: D_0(2400) \)
- \(D_1(2420) \)

\[s \rightarrow \pi \]

(a)bound state, II/IV sheet pole («molecule»)

- Tornqvist, Z.Phys. C61, 525
- Swanson, Phys.Rept. 429
- Hanhart et al. PRL111, 132003

\[u: Z_c(3900)? \]

Resonance, III sheet pole («compact state»)

- Maiani et al., PRD71, 014028
- Faccini et al., PRD87, 111102
- Esposito et al., Phys.Rept. 668

\[\sigma, f_0(980) \]
Triangle singularity

- Logarithmic branch points due to exchanges in the cross channels can simulate a resonant behavior, only in very special kinematical conditions (Coleman and Norton, Nuovo Cim. 38, 438)
- However, this effects cancels in Dalitz projections, no peaks (Schmid, Phys.Rev. 154, 1363)
- But the cancellation can be spread in different channels, you might still see peaks in other channels!
Testing scenarios

- We approximate all the particles to be scalar – this affects the value of couplings, which are not normalized anyway – but not the position of singularities. This also limits the number of free parameters.

\[
f_i(s, t, u) = 16\pi \left[a_{0,i}^{(t)}(t) + a_{0,i}^{(u)}(u) + \sum_j t_{ij}(s) \left(c_j + \frac{s}{\pi} \int_{s_j}^{\infty} ds' \frac{\rho_j(s')b_{0,j}(s')}{s'(s' - s)} \right) \right],
\]

The scattering matrix is parametrized as \((t^{-1})_{ij} = K_{ij} - i \rho_i \delta_{ij}\)

Four different scenarios considered:

- «III»: the K matrix is \(\frac{g_i g_j}{M^2 - s'}\), this generates a pole in the closest unphysical sheet. The rescattering integral is set to zero.
- «III+tr.»: same, but with the correct value of the rescattering integral.
- «IV+tr.»: the K matrix is constant, this generates a pole in the IV sheet.
- «tr.»: same, but the pole is pushed far away by adding a penalty in the \(\chi^2\).
Singularities and lineshapes

Different lineshapes according to different singularities

A. Pilloni – JPAC program for Hadron Spectroscopy
Fit: III+tr.

$E_{CM} = 4.26$ GeV

$E_{CM} = 4.23$ GeV

$m(J/\psi \pi)$ (GeV)

$m(D^{*})$ (GeV)

$m(\pi \pi)$ (GeV)
Fit: IV+tr.
Fit: tr.

A. Pilloni – JPAC program for Hadron Spectroscopy
Fit summary

Naive loglikelihood ratio test give a ~ 4σ significance of the scenario III+tr. over IV+tr., looking at plots it looks too much – better using some more solid test
Pole extraction

Not conclusive at this stage

<table>
<thead>
<tr>
<th>Scenario</th>
<th>III+tr.</th>
<th>IV+tr.</th>
<th>tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>1.5σ (1.5σ)</td>
<td>1.5σ (2.7σ)</td>
<td>“2.4\sigma” (“1.4\sigma”)</td>
</tr>
<tr>
<td>III+tr.</td>
<td>–</td>
<td>1.5σ (3.1σ)</td>
<td>“2.6\sigma” (“1.3\sigma”)</td>
</tr>
<tr>
<td>IV+tr.</td>
<td>–</td>
<td>–</td>
<td>“2.1\sigma” (“0.9\sigma”)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scenario</th>
<th>III</th>
<th>III+tr.</th>
<th>IV+tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>M (MeV)</td>
<td>$3893.2^{+5.5}_{-7.7}$</td>
<td>3905^{+11}_{-9}</td>
<td>3900^{+140}_{-90}</td>
</tr>
<tr>
<td>Γ (MeV)</td>
<td>48^{+19}_{-14}</td>
<td>85^{+45}_{-26}</td>
<td>240^{+230}_{-130}</td>
</tr>
</tbody>
</table>
Pentaquark photoproduction

To exclude any rescattering mechanism, we propose to search the $P_c(4450)$ state in photoproduction.

We use the (few) existing data and VMD + pomeron inspired bkg to estimate the cross section.

GlueX data coming soon!

$J^P = (3/2)^-$

<table>
<thead>
<tr>
<th>σ_s (MeV)</th>
<th>0</th>
<th>60</th>
<th>120</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.156$^{+0.029}_{-0.020}$</td>
<td>0.157$^{+0.039}_{-0.021}$</td>
<td>0.157$^{+0.037}_{-0.022}$</td>
</tr>
<tr>
<td>α_0</td>
<td>1.151$^{+0.018}_{-0.020}$</td>
<td>1.150$^{+0.018}_{-0.026}$</td>
<td>1.150$^{+0.015}_{-0.023}$</td>
</tr>
<tr>
<td>α' (GeV$^{-2}$)</td>
<td>0.112$^{+0.033}_{-0.054}$</td>
<td>0.111$^{+0.037}_{-0.064}$</td>
<td>0.111$^{+0.038}_{-0.054}$</td>
</tr>
<tr>
<td>s_t (GeV2)</td>
<td>16.8$^{+1.7}_{-0.9}$</td>
<td>16.9$^{+2.0}_{-1.6}$</td>
<td>16.9$^{+2.0}_{-1.1}$</td>
</tr>
<tr>
<td>b_0 (GeV$^{-2}$)</td>
<td>1.01$^{+0.47}_{-0.29}$</td>
<td>1.02$^{+0.61}_{-0.32}$</td>
<td>1.03$^{+0.49}_{-0.31}$</td>
</tr>
<tr>
<td>B_{vp} (95% CL)</td>
<td>$\leq 29%$</td>
<td>$\leq 30%$</td>
<td>$\leq 23%$</td>
</tr>
</tbody>
</table>

Hiller Blin, AP et al. (JPAC), PRD94, 034002

A. Pilloni – JPAC program for Hadron Spectroscopy
Higher energies: Regge exchange

Resonances are poles in s for fixed l dominate low energy region

$$A_l \sim \frac{g_1 g_2}{s_p - s}$$

Reggeons are poles in l for fixed s dominate high energy region

$$A \sim \sum s^l \sim \beta(t) s^{\alpha(t)}$$

A. Pilloni – JPAC program for Hadron Spectroscopy
Finite energy sum rules

See J. Nys talk at 12pm

\[m(\eta\pi) < 3 \text{ (GeV/c}^2)\text{)}^2 \]

PWA in the low energy region
Resonance extraction

Analytically connected

Regge exchanges at high energy

\[m(\eta\pi) \in [5-6] \text{ (GeV/c}^2)\text{)}^2 \]
Searching for resonances in $\eta\pi$

- The $\eta\pi$ system is one of the golden modes for hunting hybrid mesons
- We build the partial waves amplitude according to the N/D method
- We test against the D-wave data, where the a_2 and the a_2' show up

Resonant content

\[
D(s) = c_0 - c_1 s - \frac{c_2}{c_3 - s} - \frac{s}{\pi} \int_{s_{th}}^{\infty} ds' \frac{\rho(s') N(s')}{s'(s' - s)}
\]

\[
a(s) = p^2 q \frac{n(s)}{D(s)} \quad \rho(s) N(s) = g \frac{\lambda^{5/2}(s, m_{\eta}^2, m_{\pi}^2)}{(s + s_R)^n}
\]

The denominator $D(s)$ contains all the Final State Interactions constrained by unitarity \rightarrow universal

The numerator $n(s)$ depends on the exchanges \rightarrow process-dependent, smooth
Searching for resonances in $\eta\pi$

$$n(s) = \frac{1}{c_3 - s} \sum_{j=1}^{n_p} a_j T_j \left(\frac{s}{s + \Lambda} \right)$$

Precise determination of pole position

$\tilde{T} = 2 \text{Im} \sqrt{s}$

$s_R = 1.0 \text{ GeV}^2$
$s_R = 1.5 \text{ GeV}^2$
$s_R = 2.0 \text{ GeV}^2$
$s_R = 2.5 \text{ GeV}^2$

\sqrt{s} [GeV]

\sqrt{s} [GeV]

Precise determination of pole position

Smooth «background»
Searching for resonances in $\eta \pi$

- We implemented the two-channel fit to estimate the systematic dependence on coupled-channel effects.
- Other systematic uncertainties include the variation of the number of terms in $n(s)$, and in the barrier factor radius s_R.

\[m(a_2) = (1307 \pm 1 \pm 6) \text{ MeV} \quad m(a'_2) = (1720 \pm 10 \pm 60) \text{ MeV} \]
\[\Gamma(a_2) = (112 \pm 1 \pm 8) \text{ MeV} \quad \Gamma(a'_2) = (280 \pm 10 \pm 70) \text{ MeV} \]

- The coupled channel analysis involving the exotic P-wave is ongoing, as well as the extension to the GlueX production mechanism and kinematics.

A. Pilloni – JPAC program for Hadron Spectroscopy
Conclusions & prospects

- JPAC is a joint effort between theorists and experimentalists to work together to make the best use of the next generation of very precise data taken at JLab and in the world.

- We aim at developing new theoretical tools, to get insight on QCD using first principles of QFT (unitarity, analyticity, crossing symmetry, low and high energy constraints,...) to extract the physics out of the data.

- Codes are public and available.

- Many other ongoing projects (both for meson and baryon spectroscopy, and for high energy observables), with a particular attention to producing complete reaction models for the golden channels in exotic meson searches.

Thank you
BACKUP
Production

- ~120 Invited Talks and Seminars
- $O(10)$ ongoing analyses
- Summer Schools on Reaction Theory (IU, 2015 and 2017)
- Workshop “Future Directions in Hadron Spectroscopy” (JLab, 2014 and UNAM 2017)

<table>
<thead>
<tr>
<th>Process</th>
<th>Authors</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi N \to \eta \pi N$</td>
<td>A. Jackura et al.</td>
<td>PRD95, 034014</td>
</tr>
<tr>
<td>$\gamma N \to \eta N$</td>
<td>J. Nys et al.</td>
<td>PRD94, 034002</td>
</tr>
<tr>
<td>$\gamma p \to J/\psi p$</td>
<td>A. Blin et al.</td>
<td>PRD93, 074029; PRD93, 074015</td>
</tr>
<tr>
<td>$K N \to K N$</td>
<td>C. Fernandez-Ramirez et al.</td>
<td>PRD92, 074013</td>
</tr>
<tr>
<td>$\eta \to \pi^+ \pi^- \pi^0$</td>
<td>P. Guo et al.</td>
<td>PRD92, 054016; PLB771, 497</td>
</tr>
<tr>
<td>$\omega, \phi \to \pi^+ \pi^- \pi^0$</td>
<td>I. Danilkin et al.</td>
<td>PRD91, 094029</td>
</tr>
<tr>
<td>$\gamma p \to K^+ K^- p$</td>
<td>M. Shi et al.</td>
<td>PRD91, 034007</td>
</tr>
</tbody>
</table>

A. Pilloni – JPAC program for Hadron Spectroscopy
Amplitude model

\[f_i(s, t, u) = 16\pi \sum_{l=0}^{L_{\text{max}}} (2l + 1) \left(a_{l,i}^{(s)}(s)P_l(z_s) + a_{l,i}^{(t)}(t)P_l(z_t) + a_{l,i}^{(w)}(u)P_l(z_u) \right) \]

Khuri-Treiman

\[f_{0,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_s f_i(s, t(s, z_s), u(s, z_s)) = a_{0,i}^{(s)} + \frac{1}{32\pi} \int_{-1}^{1} dz_s \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(w)}(u) \right) \equiv a_{0,i}^{(s)} + b_{0,i}(s) \]

\[f_{l,i}(s) = \frac{1}{32\pi} \int_{-1}^{1} dz_s P_l(z_s) \left(a_{0,i}^{(t)}(t) + a_{0,i}^{(w)}(u) \right) \equiv b_{l,i}(s) \quad \text{for } l > 0. \]

\[f_{0,i}(s) = b_{0,i}(s) + \sum_j t_{ij}(s) \frac{1}{\pi} \int_{s_j}^{\infty} ds' \frac{\rho_j(s')b_{0,j}(s')}{s' - s}, \]

\[f_i(s, t, u) = 16\pi \left[a_{0,i}^{(t)}(t) + a_{0,i}^{(w)}(u) + \sum_j t_{ij}(s) \left(c_j + \frac{s}{\pi} \int_{s_j}^{\infty} ds' \frac{\rho_j(s')b_{0,j}(s')}{s' (s' - s)} \right) \right]. \]
Strategy

- We fit the following invariant mass distributions:
 - BESIII PRL110, 252001 $J/\psi \pi^+, J/\psi \pi^-, \pi^+\pi^-$ at $E_{CM} = 4.26$ GeV
 - BESIII PRL110, 252001 $J/\psi \pi^0$ at $E_{CM} = 4.23, 4.26, 4.36$ GeV
 - BESIII PRD92, 092006 $\overline{D}^0 D^{*+}, \overline{D}^{*0} D^+$ (double tag) at $E_{CM} = 4.23, 4.26$ GeV
 - BESIII PRL115, 222002 $\overline{D}^0 D^{*0}, \overline{D}^{*0} D^0$ at $E_{CM} = 4.23, 4.26$ GeV
 - BESIII PRL112, 022001 $\overline{D}^0 D^{*+}, \overline{D}^{*0} D^+$ (single tag) at $E_{CM} = 4.26$ GeV
 - Belle PRL110, 252002 $J/\psi \pi^\pm$ at $E_{CM} = 4.26$ GeV
 - CLEO-c data PLB727, 366 $J/\psi \pi^\pm, J/\psi \pi^0$ at $E_{CM} = 4.17$ GeV

- Published data are not efficiency/acceptance corrected, we are not able to give the absolute normalization of the amplitudes

- No given dependence on E_{CM} is assumed – the couplings at different E_{CM} are independent parameters
• **Reducible (incoherent) backgrounds are pretty flat** and do not influence the analysis, except the peaking background in $\bar{D}^0 D^*$, $\bar{D}^* D^0$ (subtracted)

• Some information about **angular distributions** has been published, but it’s **not constraining** enough ⇒ we do not include in the fit

• Because of that, **we approximate all the particles to be scalar** – this affects the value of couplings, which are not normalized anyway – but not the position of singularities. This also limits the number of free parameters
Figure 7: Interplay of scattering amplitude poles and triangle singularity to reconstruct the peak. We focus on the $J/\psi \pi$ channel, at $E_{CM} = 4.26$ GeV. The red curve is the t_{12} scattering amplitude, the green curve is the $c_1 + H(s, D_1) + +H(s, D_0)$ term in Eq. (9), and the blue curve is the product of the two. The upper plots show the magnitudes of these terms, the lower plots the phases. The middle row shows the contributions to the unitarized term due to the D_1 (dashed) and the D_0 (dotted). Only for D_1 the singularity is close enough to the physical region to generate a large peak. (a) The pole on the III sheet generates a narrow Breit-Wigner-like peak. The contribution of the triangle is not particularly relevant. (b) The sharp cusp in the scattering amplitude is due to the IV sheet pole close by; the triangle contributes to make the peak sharper. (c) The scattering amplitude has a small cusp due to the threshold factor, and the triangle is needed to make it sharp enough to fit the data.
Lineshapes at 4230

Figure 8: Same as Figure 7, but for $E_{CM} = 4.23$ GeV.
Statistical analysis

Toy experiments according to the different hypotheses, to estimate the relative rejection of various scenarios:

<table>
<thead>
<tr>
<th>Scenario</th>
<th>III+tr.</th>
<th>IV+tr.</th>
<th>tr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>III</td>
<td>1.5σ (1.5σ)</td>
<td>1.5σ (2.7σ)</td>
<td>“2.4σ” (“1.4σ”)</td>
</tr>
<tr>
<td>III+tr.</td>
<td>–</td>
<td>1.5σ (3.1σ)</td>
<td>“2.6σ” (“1.3σ”)</td>
</tr>
<tr>
<td>IV+tr.</td>
<td></td>
<td></td>
<td>“2.1σ” (“0.9σ”)</td>
</tr>
</tbody>
</table>

Not conclusive at this stage
PWA of 3\pi system

We start from 2^{-+}, long standing puzzle about $\pi_2(1670) - \pi_2(1880)$ interplay

\[
F_{LS}(s) = b_{LS}(s) + h_L \tilde{T}(s)c_{LS'} + \frac{h_L \tilde{T}(s)}{\pi} \int_{s_{th}}^{\infty} \frac{\rho(s')b_{LS'}(s')h_L(s')}{s' - s - i0} ds'
\]

- The rescattering (Unitarisation) term has to be added to preserve unitarity.
- Shape of the background is fixed by projections of one-pion-exchange diagram.
- Fit parameters are strengths of background for each channel, production constants c_{LS} and K-matrix parameters.

Details of one-pion-exchange amplitude calculations

- Pomeron trajectory $(s/s_0)^{\alpha(t)}$, $s_0 = 1$ GeV2, $\alpha(t) = 1$.
- Pion propagator is not "reggeized”
- Proton spin and structure is neglected
- Isobar decay amplitude is taken out, remaining isobar mass dependence is smeared out.

A. Jackura, M. Mikhasenko (JPAC), in progress
PWA of 3π system

Model-II, 3 waves fit
$0.12 \text{ GeV}^2 < t' < 0.26 \text{ GeV}^2$, 3 poles, unitarized background

Spin-density matrix: Intensity, Real and Imaginary part of intergerences.
PWA of 3π system

We start from 2^{-+}, long standing puzzle about $\pi_2(1670) - \pi_2(1880)$ interplay

A. Jackura, M. Mikhasenko (JPAC), in progress
\(\pi, \rho \) photoproduction

Test factorization on the simplest cases
1. Neutral pion photoproduction
2. Charged pion photoproduction
3. Rho meson photoproduction

natural exchanges: \(\rho/\omega/f_2/a_2/P \)
unnatural exchanges: \(\pi/b/h \)

special ?

\[P = (-)^J \]

\[P = -(-)^J \]
$\gamma p \to \pi^0 p$

Model based on factorization with parameters fitted

\[\Sigma = \frac{\sigma_\perp - \sigma_\parallel}{\sigma_\perp + \sigma_\parallel} = \frac{|\rho + \omega|^2 - |b + h|^2}{|\rho + \omega|^2 + |b + h|^2} \]

axial-vector exchanges strength decreases with energy

More precise data@JLAB could confirm

Mathieu et al. (JPAC), PRD92, 074013
\[\gamma p \rightarrow \pi^+ n \]

Pion dominate very small |t| :

\[|\Delta \lambda| = 1 \]

\[\gamma \rightarrow \pi^+ - \pi - e \]

\[g_{\pi NN} \]

\[|\Delta \lambda| = 1 \]

Factorization of Regge residues:

\[(\lambda_{\gamma}, \lambda_{\pi}) = (1, 0) \quad \text{and} \]

\[(\lambda_{p}, \lambda_{n}) = \left(-\frac{1}{2}, \frac{1}{2} \right) \]

\[(\lambda_{p}, \lambda_{n}) = \left(\frac{1}{2}, -\frac{1}{2} \right) \]

\[A^{10}_{-\frac{1}{2} \frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t} \]

\[A^{10}_{\frac{1}{2} -\frac{1}{2}} \propto \frac{-t}{m_{\pi}^2 - t} \]

William’s Poor man absorption:

\[\rightarrow \frac{-m_{\pi}^2}{m_{\pi}^2 - t} \]

\[|(\lambda_{\gamma} - \lambda_{p}) - (\lambda_{\pi} - \lambda_{p'})| = 0 \]

\[\gamma \rightarrow [\pi, \pi] [p, p] \]

[Boyarshi et al. 1968]
KN scattering and the \(\Lambda(1405) \)

Coupled-channel K matrix model (up to 13 channels per partial wave), analyticity in angular momentum enforced, fit to KSU partial waves.

One of the \(\Lambda(1405) \) poles is out of the trajectory → non 3-q state

Fernandez-Ramirez *et al.* (JPAC), PRD93, 034029

Fernandez-Ramirez *et al.* (JPAC), PRD93, 074015
\(\psi^{(i)} \rightarrow \pi^+ \pi^- \pi^0 \) within dual models

\[
A(s, t) = \frac{\Gamma(-J(s))\Gamma(-J(t))}{\Gamma(-J(s) - J(t))}
\]

Szczepaniak and Pennington, PLB737, 283