Light spectroscopy on the lattice Raúl Briceño

Lepton/Hadron workshop, 2017

Lattice QCD calculations with multi-hadron states in the mesonic isoscalar sector

Wilson (Marie Curie/Ro	yal fellow/Trinity)	had	spec	
	PRL 118, 022002 (2017)	PHYSICAL REVIEW LETTERS	week ending 13 JANUARY 2017	
Dudek (W&M/JLab)	Isoscalar $\pi\pi$ Scattering and the σ Meson Resonance from QCD			
	Raul A. Briceño, ^{1,*} Jozef J. Dudek, ^{1,2,†} Robert G. Edwards, ^{1,‡} and David J. Wilson ^{3,§}			
	(for the Hadron Spectrum Collaboration)			
	¹ Thomas Jefferson Nation ² Department of Pl ³ Department of Ap	al Accelerator Facility, 12000 Jefferson Avenue, Newport News, W hysics, College of William and Mary, Williamsburg, Virginia 2318 uplied Mathematics and Theoretical Physics, Centre for Mathemati	Virginia 23606, USA 7-8795, USA ical Sciences,	
Edwards (JLab)			JLAB-THY-17-2534	
	Isoscalar $\pi\pi, K\overline{K}, \eta\eta$ scattering and the σ, f_0, f_2 mesons from QCD			
	Raul A. Briceño, ^{1, 2, *} Jozef J. Dudek, ^{1, 3, †} Robert G. Edwards, ^{1, ‡} and David J. Wilson ^{4, §} (for the Hadron Spectrum Collaboration)			
	¹ Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA ² Department of Physics, Old Dominian University, Norfolk, VA 23589, USA ³ Department of Physics, College of William and Mary, Williamsburg, VA 23187, USA ⁴ School of Mathematics, Trinity College, Dublin 2, Ireland (Dated: August 23, 2017)			
	We pre- extracted mass corr σ and f_0 to what is vicinity of sca to δD observed of scatter	sent the first lattice QCD study of coupled isoscalar $\pi\pi$, $K\overline{K}$, $\eta\eta$ <i>S</i> - and from discrete finite-volume spectra computed on lattices which have a asponding to $m_{\pi} \sim 391$ MeV. In the $J^P = 0^+$ sector we find analogues o 980) states, where the σ appears as a stable bound-state below $\pi\pi$ three a seen in experiment, the $f_0(980)$ manifests itself as a dip in the $\pi\pi$ cr the $K\overline{K}$ threshold. For $J^P = 2^+$ we find two states resembling the $f_2(1)$ is narrow peaks, with the lighter state dominantly decaying to $\pi\pi$ and the presence of all these states is determined rigorously by finding the pole s and amplitudes, and their couplings to decay channels are established using	<i>D</i> -wave scattering value of the quark f the experimental shold, and, similar coas section in the 270) and $f'_2(1525)$, he heavier state to singularity content ing the residues of	

Experimental manifestation

Experimental manifestation

Experimental manifestation

Quantitative definition

unitarity:
$${\cal M}_{\pi\pi}^{-1} \propto {\cal K}_{\pi\pi}^{-1} - i p_{\pi\pi}$$

square-root singularity at each threshold:

+

$$p_{\pi\pi} = \frac{1}{2}\sqrt{s - s_{\pi\pi,th}}$$

unitarity:
$$\mathcal{M}_{ab}^{-1} \propto \mathcal{K}_{ab}^{-1} - ip_a \,\delta_{ab}$$

 $a \, b = \pi \pi \, \mathrm{or} \, K \overline{K}$

square-root singularity at each threshold:

+

$$p_{\pi\pi} = \frac{1}{2}\sqrt{s - s_{\pi\pi,th}}$$
$$p_{K\overline{K}} = \frac{1}{2}\sqrt{s - s_{K\overline{K},th}}$$

 $\mathrm{Im}\ p_{K\overline{K}}$

+

unitarity:
$$\mathcal{M}_{ab}^{-1} \propto \mathcal{K}_{ab}^{-1} - ip_a \, \delta_{ab}$$

 $a \, b = \pi \pi ext{ or } K \overline{K}$

square-root singularity at each threshold:

$$p_{\pi\pi} = \frac{1}{2}\sqrt{s - s_{\pi\pi,th}}$$
$$p_{K\overline{K}} = \frac{1}{2}\sqrt{s - s_{K\overline{K},th}}$$

 $\mathrm{Im}~p_{\underline{K}\overline{K}}$

+

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \to m_q^{\text{phys.}}$
- I lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$
- lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

Never free! No asymptotic states! No scattering!

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$
- lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume

FV spectrum

- Wick rotation [Euclidean spacetime]: $t_M \rightarrow -it_E$
- Monte Carlo sampling
- quark masses: $m_q \rightarrow m_q^{\text{phys.}}$
- a lattice spacing: $a \sim 0.03 0.15$ fm
- finite volume
- Correlation functions: spectrum, matrix elements

Scattering amplitudes

$$\det[F^{-1}(E_L,L) + \mathcal{M}(E_L)] = 0 \qquad \begin{array}{l} E_L = \text{finite volume spec.} \\ L = \text{finite volume} \\ F = \text{known function} \\ \mathcal{M} = \text{scattering amp.} \end{array}$$

- Lüscher (1986, 1991) [elastic scalar bosons]
- Rummukainen & Gottlieb (1995) [moving elastic scalar bosons]
- Kim, Sachrajda, & Sharpe/Christ, Kim & Yamazaki (2005) [QFT derivation]
- Feng, Li, & Liu (2004) [inelastic scalar bosons]
- Hansen & Sharpe / RB & Davoudi (2012) [moving inelastic scalar bosons]
- RB (2014) [general 2-body result]

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum_n Z_{b,n} Z_{a,n}^* e^{-E_n t}$

...a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \, \Gamma_b \, q$

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum_n Z_{b,n} Z_{a,n}^* e^{-E_n t}$

...a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

New "old-school spectroscopy"

Evaluate: $C_{ab}^{2pt.}(t, \mathbf{P}) \equiv \langle 0 | \mathcal{O}_b(t, \mathbf{P}) \mathcal{O}_a^{\dagger}(0, \mathbf{P}) | 0 \rangle = \sum_n Z_{b,n} Z_{a,n}^* e^{-E_n t}$

...a large number [10-30] of local ops, $\mathcal{O}_b \sim \bar{q} \Gamma_b q$

Narrow width approximation

- \mathbb{P} Op. basis did not include multi-hadron ops: $\pi\pi, \, K\overline{K}, \eta\eta, \pi\pi\pi, \dots$
- Unstable nature of the states ignored
 - Finite-volume states are *not* resonances
 - Must use Lüscher and its extensions
- **Spectrum does suggest where** *some* **resonance might lie**

Isoscalar spectra: S-wave dominant

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

Isoscalar spectra: S-wave dominant

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

Isoscalar spectra: D-wave dominant

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

Isoscalar spectra: D-wave dominant

- Multi-meson ops. are crucial
- Spectrum including a larger basis: $\{\pi\pi, K\overline{K}, \eta\eta, \ell\overline{\ell}, s\overline{s}\}$

 m_{π} =391 MeV

Elastic region

Solution Below $2m_K$, one directly determine the $\pi\pi$ amplitude

Solution $\stackrel{\bullet}{\bullet}$ Clear evidence of bound state below $\pi\pi$ threshold

Fhis correspondence only holds if partial-wave mixing is negligible [checked]

Solution Above $2m_K$, there is not a one-to-one correspondence

$$\det \begin{bmatrix} F_{\pi\pi}^{-1} + \mathcal{M}_{\pi\pi,\pi\pi} & \mathcal{M}_{\pi\pi,K\overline{K}} \\ \mathcal{M}_{\pi\pi,K\overline{K}} & F_{K\overline{K}}^{-1} + \mathcal{M}_{K\overline{K},K\overline{K}} \end{bmatrix} = 0$$
Feng, Li, & Liu (2004),

Feng, Li, & Liu (2004), Hansen & Sharpe / RB & Davoudi (2012)

- Fingeneral, must constrain (1/2) $[N^2 + N]$ functions of energy
- Need that many energy levels at the same energy
- Alternatively, parametrize scattering amplitude and do a global fit

S-wave above $2m_{\pi}$, $2m_K$, and $2m_{\eta}$

Ansatz $\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e \\ c+ds & f & g \\ e & g & h \end{pmatrix}$

 \Im S-wave above $2m_{\pi}$, $2m_K$, and $2m_\eta$

Ansatz $\mathbf{K}^{-1}(s) = \begin{pmatrix} a+bs & c+ds & e \\ c+ds & f & g \\ e & a & h \end{pmatrix}$ $\chi^2/N_{\rm dof} = \frac{44.0}{57-8} = 0.90$ 57 energy levels "cross section" 0.8 0.6 $\pi\pi \to \pi\pi$ $K\overline{K} \to K\overline{K}$ 0.4 0.2 $\pi\pi \to K\overline{K}$ $\frac{1}{0.24} a_t E_{\rm cm}$ 0.18 0.20 0.16 0.22 0.14 0 0 0 0 0 0.2 $\eta\eta \to KK$ $\eta\eta \to \pi\pi$ $\eta\eta\to\eta\eta$ 0.14 0.16 0.18 0.20 0.22 0.24

D-wave above $2m_{\pi}$, $2m_K$, and $2m_{\eta}$

Ansatz $K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$ $\gamma_{ij} = 0$ otherwise

 \Im D-wave above $2m_{\pi}$, $2m_K$, and $2m_\eta$

Ansatz $K_{ij}(s) = \frac{g_i^{(1)}g_j^{(1)}}{m_1^2 - s} + \frac{g_i^{(2)}g_j^{(2)}}{m_2^2 - s} + \gamma_{ij}$ $\gamma_{ij} = 0$ otherwise

Tensor and scalar nonets

First complete determination of the scalar and tensor nonets from LQCD :

<i>ππ,</i> KK, ηη:	RB, Dudek, Edwards - PRL (2017)
	RB, Dudek, Edwards - arXiv (2017)
Κπ, Κη:	Dudek, Edwards, Thomas, Wilson - PRL (2015)
	Wilson, Dudek, Edwards, Thomas - PRD (2015)
πη, KK:	Dudek, Edwards, Wilson - PRD (2016)

Tensor nonet

Scalar nonet

Operator basis:

- tetraquarks? on it!
- $=4\pi?$
- glueballs? harder
- ₽...

Tetraquark operators in lattice QCD and exotic flavour states in the charm sector

p-lat] 5 Sep 2017

Gavin K. C. Cheung,^{*a*} Christopher E. Thomas,^{*a*} Jozef J. Dudek,^{*b*,*c*} Robert G. Edwards^{*b*} (For the Hadron Spectrum Collaboration)

- ^aDAMTP, University of Cambridge, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, UK
- ^b Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606, USA
- ^cDepartment of Physics, College of William and Mary, Williamsburg, VA 23187, USA
- *E-mail:* gkcc2@damtp.cam.ac.uk, c.e.thomas@damtp.cam.ac.uk, dudek@jlab.org, edwards@jlab.org

Operator basis:

- tetraquarks? on it!
- 4π?
- 🛿 glueballs? harder
- ¥ ...

Amplitude analysis:

3 particles or more? on it!

Operator basis:

- tetraquarks? on it!
- 4π?
- 🛿 glueballs? harder
- ş...

Amplitude analysis:

- 3 particles or more? on it!
- dispersive techniques?

Operator basis:

- tetraquarks? on it! ş
- 4π?
- glueballs? harder
- ş • • •

Leptons:

transition processes

Amplitude analysis:

- 3 particles or more? on it!
- dispersive techniques?

Operator basis:

- tetraquarks? on it!
- 4π?
- 🛿 glueballs? harder
- *≌* ...

Leptons:

- transition processes? on it!
- elastic processes (the future)? on it!

Amplitude analysis:

- 3 particles or more? on it!
- dispersive techniques?

Collaborators and references

A review / introduction

Scattering processes and resonances from lattice QCD

Raúl A. Briceño,^{1, *} Jozef J. Dudek,^{1, 2, †} and Ross D. Young^{3, ‡}

¹Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Virginia 23606, USA

²Department of Physics, College of William and Mary, Williamsburg, Virginia 23187, USA

³Special Research Center for the Subatomic Structure of Matter (CSSM), Department of Physics, University of Adelaide, Adelaide 5005, Australia

Multi-Hadron Systems from Lattice QCD INT workshop: Seattle, WA Feb 5-9th 2018

Hansen

Wilson

back-up slides

We inberg compositeness criterion for the σ

 \Im The σ is a bound state, so we can apply Weinberg's criterion

$$|\sigma\rangle_{391} \sim \sqrt{Z} \left(\mathbf{e} + \mathbf$$

Gan relate Z to scattering information

$$a = -2\frac{1-Z}{2-Z}\frac{1}{\sqrt{m_\pi B_\sigma}},$$

$$r = -\frac{Z}{1-Z} \frac{1}{\sqrt{m_\pi B_\sigma}}$$

- For obtain: $Z \sim 0.3(1)$
- Source Consistent with the large FV effects

Complex momentum plane

Overlaps

Extracting the spectrum

$$C_{ab}^{2pt.}(t,\mathbf{P}) \equiv \langle 0|\mathcal{O}_b(t,\mathbf{P})\mathcal{O}_a^{\dagger}(0,\mathbf{P})|0\rangle = \sum Z_{b,n} Z_{a,n}^{\dagger} e^{-E_n t}$$

n

- *Use local and multi-hadron ops ~ 20-30 ops*
- Evaluate all Wick contraction: distillation [Peardon, et al. (2009)]
- *Variationally* optimize operators [Michael (1985), Lüscher & Wolff (1990)]
- extract ~ 30 100 energy levels $\stackrel{\scriptstyle{\$}}{=}$ e.g., isoscalar $\pi\pi$ below the $2m_K$ threshold [000][100][110][111] [200] E_{cm} [000][111] [200][100] [110] E_{cm} 1000 1100 900 互 1000 互 Ī 800 互 900 互 互 Ī 互 Ī 互 700 互 800 --॒_-互 Ī Ī Ŧ 600 Ţ Ŧ 互 Å 700 互 Ī 互 500 600 п 32 40 24 20 24 20 32 40 24 20 20 24 24 24 24 20 16 32 32 4016 16 16 16 24 *m*_π=391 MeV m_{π} =236 MeV RB, Dudek, Edwards, Wilson - PRL (2017)

Isoscalar $\pi\pi$ scattering

The $\sigma/f_0(500)$ vs m_{π}

