

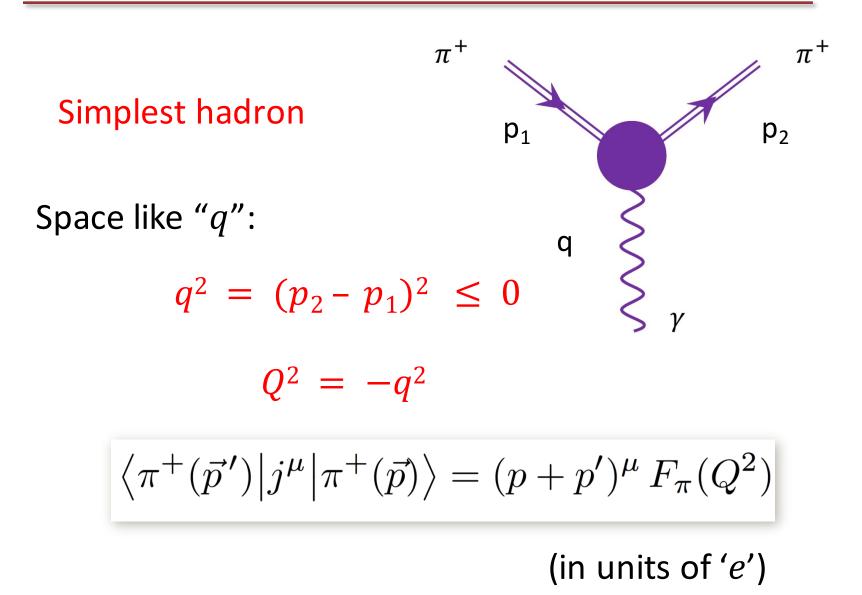
Form factors on the lattice

Bipasha Chakraborty

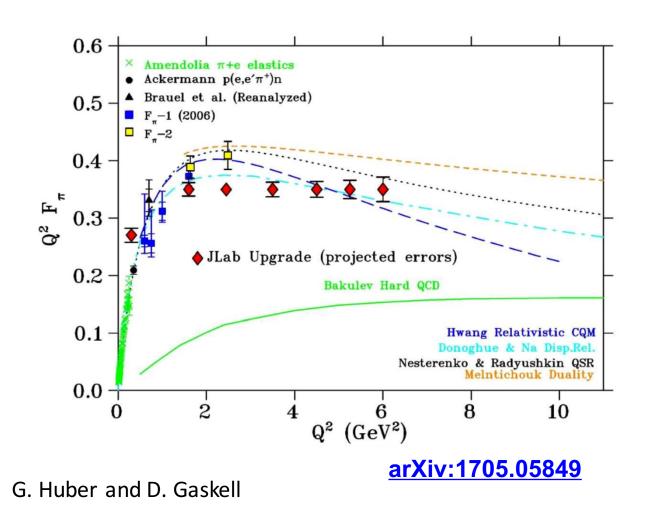
Jefferson Lab

Hadronic Physics with Leptonic and Hadronic Beams, Newport News, USA 8th Sept, 2017.

Pion electromagnetic form factor



Interplay between hard and soft scales



Hard tail ($Q^2 \rightarrow \infty$) from pQCD:

 $F_{\pi}(Q^2) \rightarrow \frac{16\pi\alpha_s(Q^2)f_{\pi}^2}{Q^2}$

G. P. Lepage, S.J.Brodsky, Phys. Lett. 87B(1979)359

Soft part $(Q^2 < 1 \text{ GeV}^2)$: vector meson dominance with $F_{\pi}(0) = 1$, data fits well

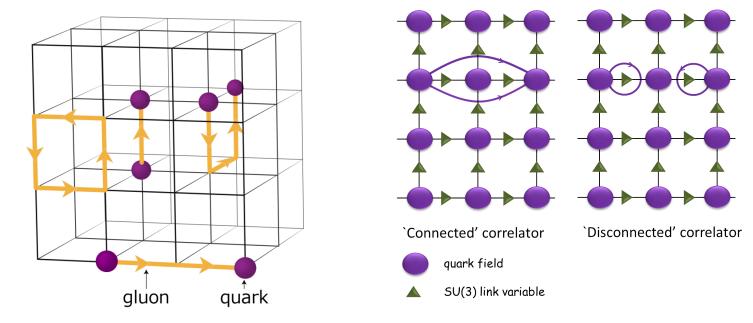
Need better understanding of the transition to the asymptotic region

Lattice recipe for meson correlators

• Expectation values of observables :

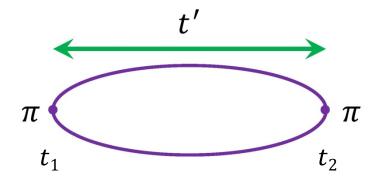
$$\int DUD\psi D\bar{\psi}exp(-\int L_{QCD}d^4x)$$

- 4-D space-time lattice
- Gauge configurations : gluons + sea quarks



- Discretise : $L_q \equiv \bar{\psi}(\gamma_\mu D^\mu + m)\psi \rightarrow \bar{\psi}(\gamma_.\Delta + ma)\psi$
- Inversion of Dirac matrix : propagator
- 2-point, 3-point correlation functions : extract meson properties
- Corrections for lattice artifacts

Two-point correlator construction: JLab way



$$C_{ij}(t) = \langle 0 | \mathcal{O}_i(t) \mathcal{O}_j^{\dagger}(0) | 0 \rangle$$

• Basis of operators

$$\mathcal{O} \sim \bar{\psi} \Gamma \overleftrightarrow{D} \cdots \overleftrightarrow{D} \psi$$

• Optimized operator for state |n>

$$\Omega_{\mathfrak{n}}^{\dagger} = \sum_{i} w_{i}^{(\mathfrak{n})} \mathcal{O}_{i}^{\dagger}$$

in a variational sense by solving generalized eigenvalue problem-

$$C(t) v^{(\mathfrak{n})} = \lambda_{\mathfrak{n}}(t) C(t_0) v^{(\mathfrak{n})}$$

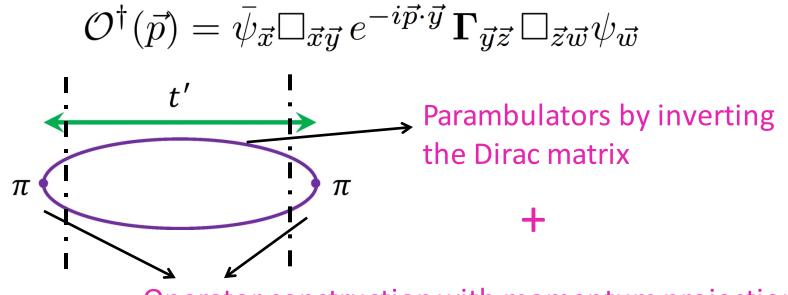
• Diagonalize the correlation matrix – eigenvalues

$$\lambda_n(t) = \exp[-E_n(t-t_0)]$$

Two-point correlator construction : JLab way

Correlator Construction: smearing of quark fields - 'distillation' with

Meson creation operator :



Operator construction with momentum projection

Form factor calculation

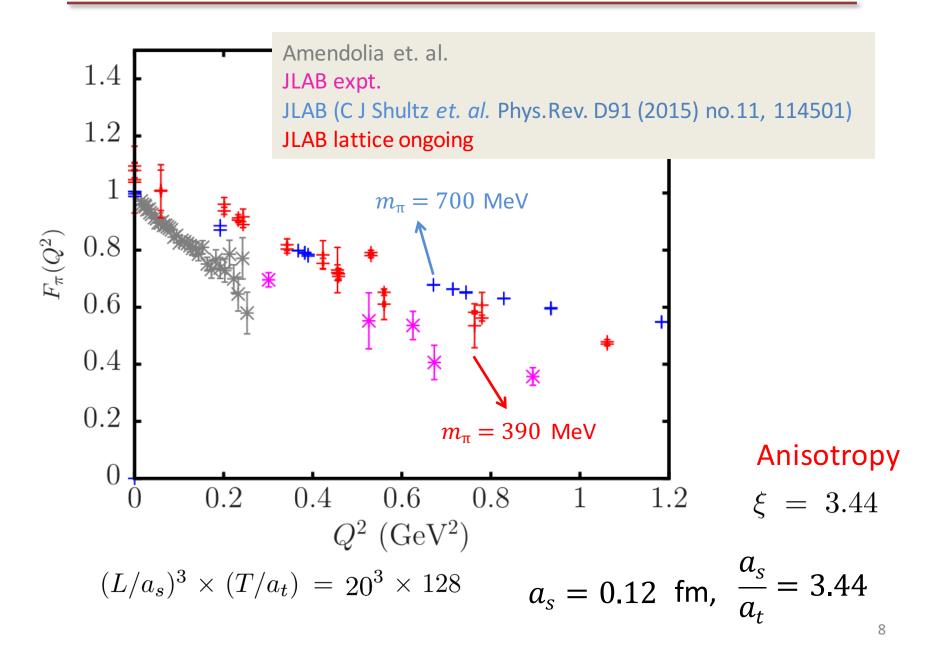
Need three-point correlator

$$T = \langle 0 | \mathcal{O}_{f}(\Delta t) j_{\mu}(t) \mathcal{O}_{i}^{\dagger}(0) | 0 \rangle$$

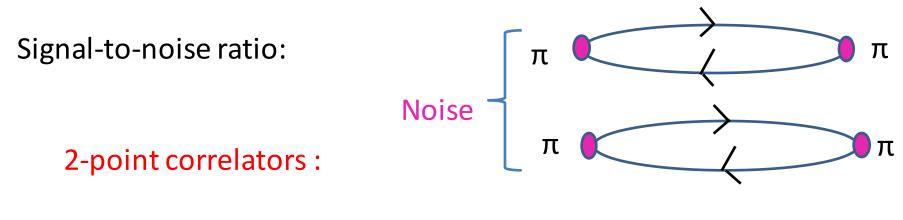
$$T = e(p_{1} + p_{2})^{\mu}F_{\pi}(q^{2})$$

$$C_{I} = e(p_{1} + p_{2})^{\mu}F_{\pi}(q^{2})$$

Pion electromagnetic form factor: up to $Q^2 = 1 \text{ GeV}^2$



More difficult on lattice for higher momenta



 $\exp[-(E_{\pi}(p)-2m_{\pi})t]$

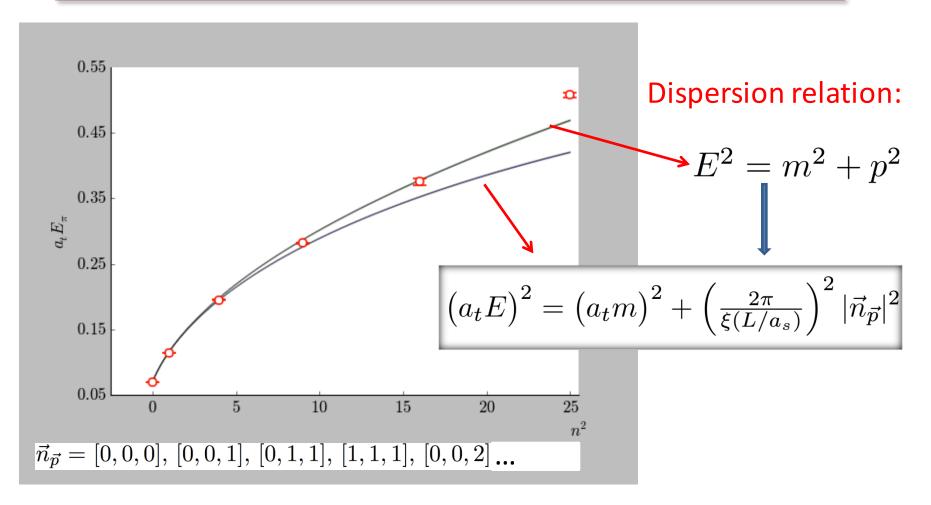
3-point correlators :

Minimize energies for a given Q^2 to get better signal

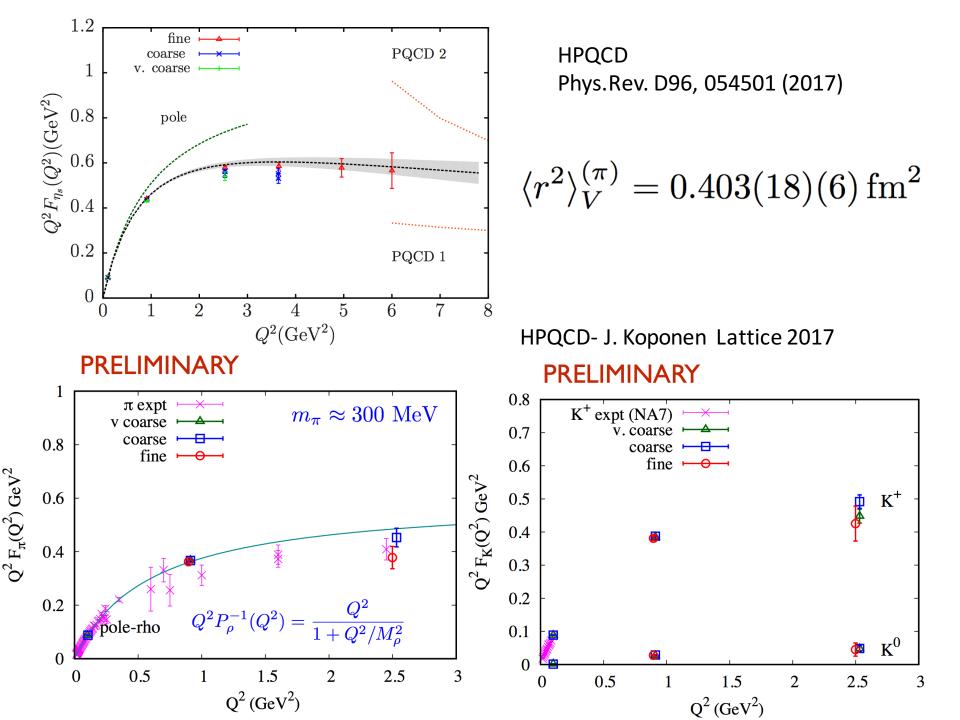
$$\exp[-(E_{\pi}(p_i) + E_{\pi}(p_f) - 2m_{\pi})t/2]$$

in the middle of the plateau

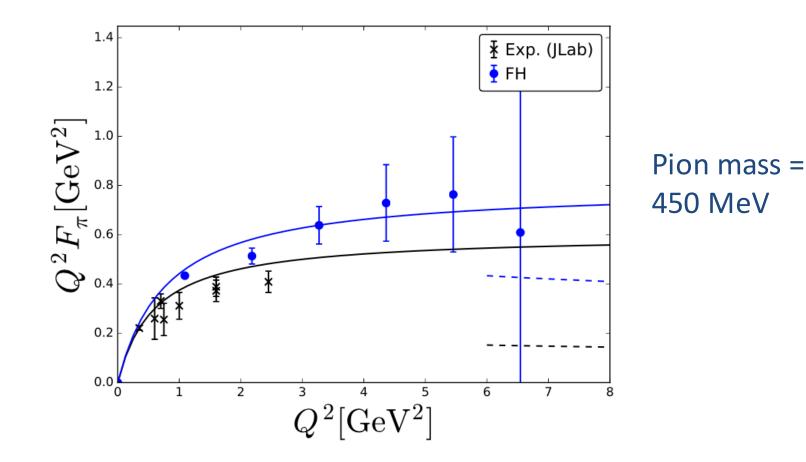
Towards higher Q^2



Achieve maximum Q^2 by using Breit frame : $\overrightarrow{P_f} = -\overrightarrow{P_i}$ Work ongoing – reached up to 4.0 GeV² with 260 MeV pion

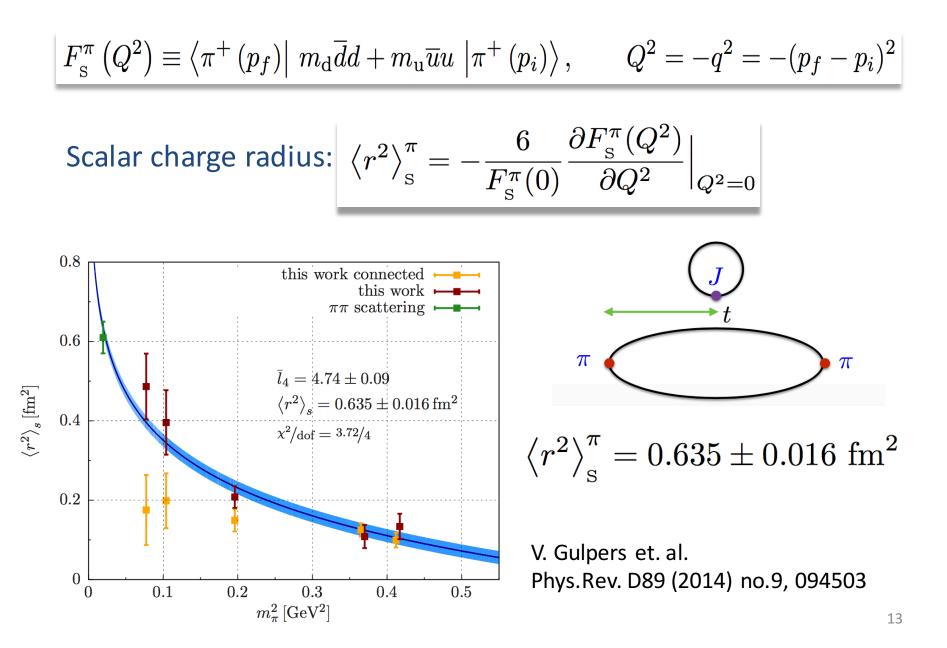


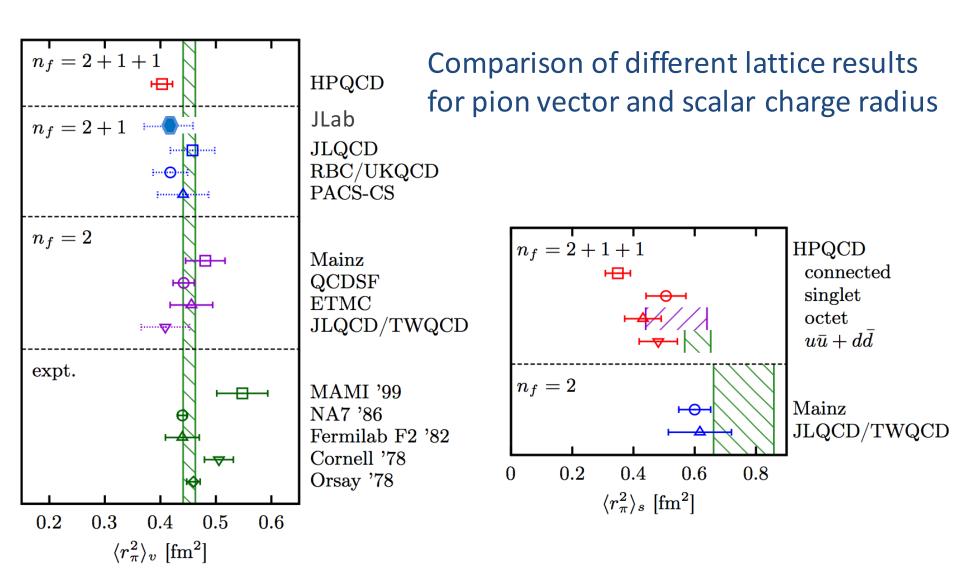
A. J. Chambers et. al. QCDSF/UKQCD/CSSM Collaborations, arXiv:1702.01513



Using Feynman-Hellmann methods

Pion scalar form factor





HPQCD, J. Koponen *et. al.* Phys.Rev. D93, 054503

Nucleon electromagnetic form factor

Sachs form factors -

$$G_{Eq} = F_{1q} - \frac{Q^2}{(2M)^2} F_{2q}$$
$$G_{Mq} = F_{1q} + F_{2q}$$

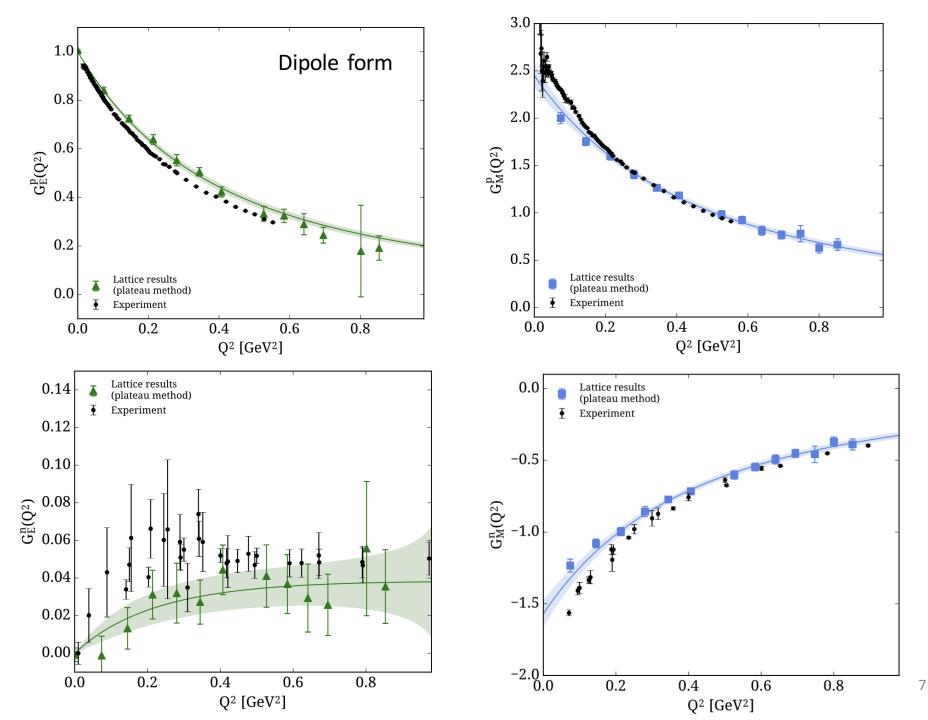
Calculated respectively from temporal and spatial component of currents

C Alexandrou *et. al.*, PhysRevD.96.034503 (First lattice calculation with physical pion; disconnected contributions included)

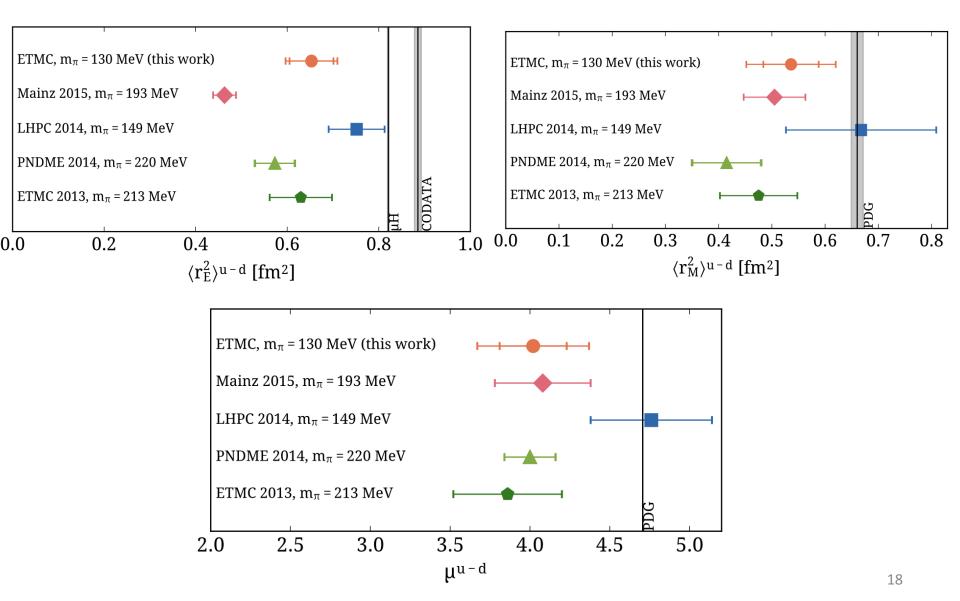
$$\begin{split} R_{\mu}(\Gamma;\vec{q};t_s;t_{\rm ins}) = & \frac{G_{\mu}(\Gamma;\vec{q};t_s;t_{\rm ins})}{G(\vec{0};t_s)} \times \\ & \left[\frac{G(\vec{0};t_s)G(\vec{q};t_s-t_{\rm ins})G(\vec{0};t_{\rm ins})}{G(\vec{q};t_s)G(\vec{0};t_s-t_{\rm ins})G(\vec{q};t_{\rm ins})} \right]^{\frac{1}{2}} \end{split}$$

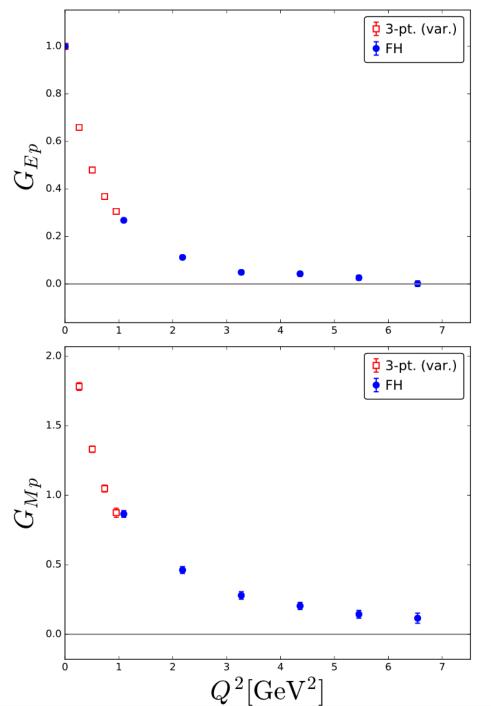
$$G(\vec{p};t) = c_0(\vec{p})e^{-E(\vec{p})t}[1+c_1(\vec{p})e^{-\Delta E_1(\vec{p})t} + \mathcal{O}(e^{-\Delta E_2(\vec{p})t})]$$

$$G_{\mu}(\Gamma; \vec{q}; t_{s}, t_{\text{ins}}) = a_{00}^{\mu}(\Gamma; \vec{q}) e^{-m(t_{s} - t_{\text{ins}})} e^{-E(\vec{q})t_{\text{ins}}} \times \left[1 + a_{01}^{\mu}(\Gamma; \vec{q}) e^{-\Delta E_{1}(\vec{q})t_{\text{ins}}} + a_{10}^{\mu}(\Gamma; \vec{q}) e^{-\Delta m_{1}(t_{s} - t_{\text{ins}})} + a_{11}^{\mu}(\Gamma; \vec{q}) e^{-\Delta m_{1}(t_{s} - t_{\text{ins}})} e^{-\Delta E_{1}(\vec{q})t_{\text{ins}}} + \cdots \right]$$



Comparison among different lattice results for nucleon charge radii and magnetic moment





Sachs form factors at high Q²

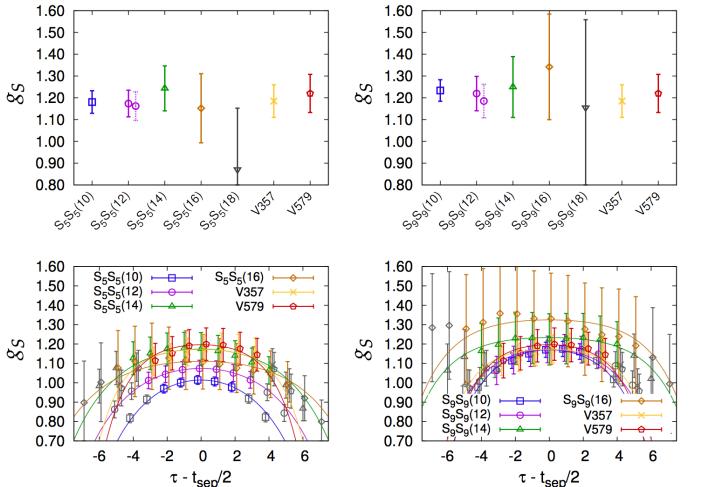
A. J. Chambers *et. al.* QCDSF/UKQCD/CSSM Collaborations, arXiv:1702.01513

- Use of Feynman-Hellmann theorem
- At 490 MeV pion mass

Isovector charges of nucleon

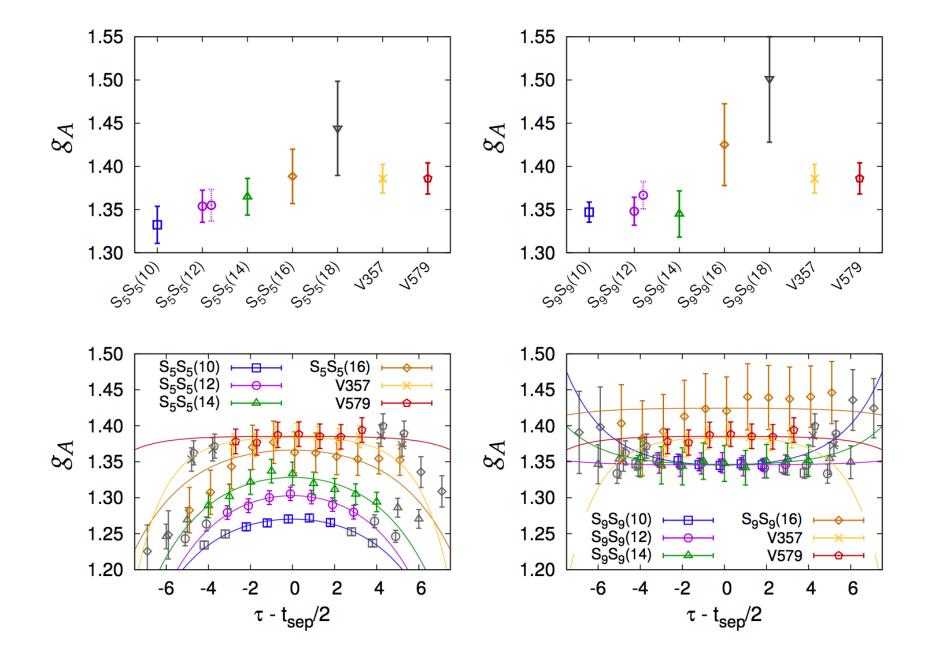
Boram Yoon *et. al.* Phys. Rev. D.93.114506 (Nucleon Matrix Elements (NME) Collaboration) [JLab participation: David Richards, Kostas Orginos, Frank Winter]

$$\langle N(p,s) | \mathcal{O}_{\Gamma}^{q} | N(p,s) \rangle = g_{\Gamma}^{q} \bar{u}_{s}(p) \Gamma u_{s}(p)$$

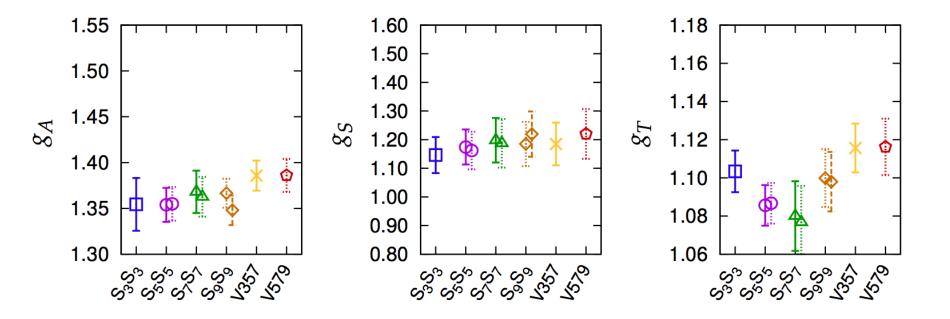


- Variational method
- AMA,
- RI-MOM

At pion mass = 312 MeV







Consistent among different smearings, and 2-state fit and variational fit

Another calculation of nucleon axial charge Evan Berkowitz *et. al.,* arXiv:1704.01114

Using Feynman-Hellmann theorem:

$$\frac{\partial E_n}{\partial \lambda} = \langle n | H_\lambda | n \rangle \qquad \qquad H = H_0 + \lambda H_\lambda$$

$$S_{\lambda} = \lambda \int d^4x j(x)$$

$$M_{\lambda}^{eff}(t,\tau) = \frac{1}{\tau} \ln\left(\frac{C_{\lambda}(t)}{C_{\lambda}(t+\tau)}\right)$$

$$\frac{\partial M^{eff}(t,\tau)}{\partial \lambda}\bigg|_{\lambda=0} = \frac{1}{\tau} \left[\frac{\partial_{\lambda} C_{\lambda}(t)}{C_{\lambda}(t)} - \frac{\partial_{\lambda} C_{\lambda}(t+\tau)}{C_{\lambda}(t+\tau)} \right]\bigg|_{\lambda=0}$$

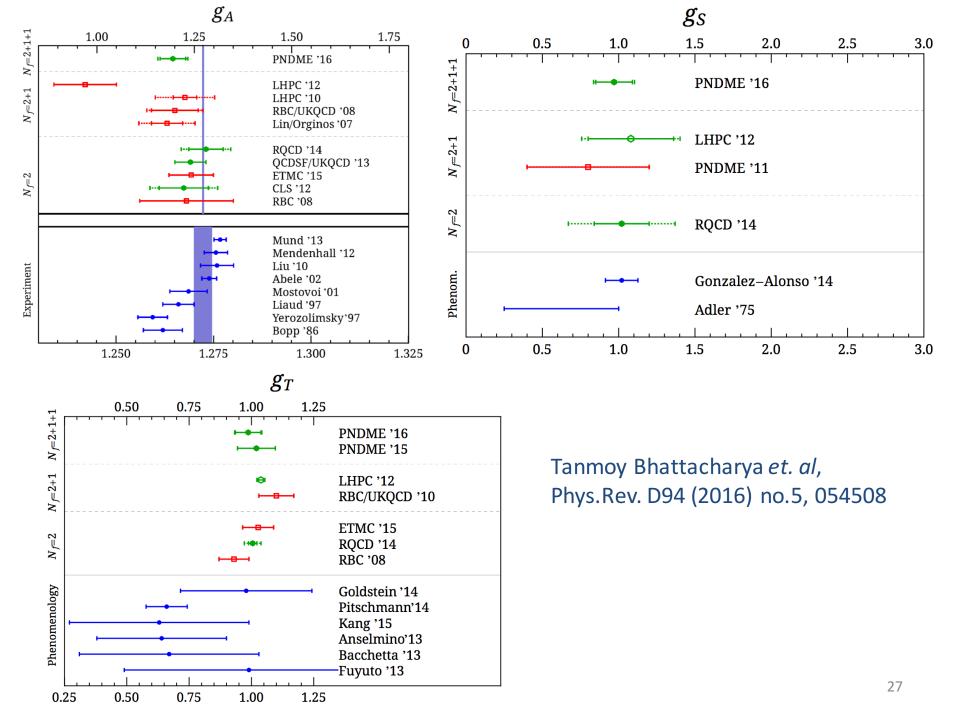
$$-\frac{\partial C_{\lambda}(t)}{\partial \lambda}\Big|_{\lambda=0} = -C(t) \int dt' \langle \Omega | J(t') | \Omega \rangle$$
$$+ \int dt' \langle \Omega | T\{N(t)J(t')N^{\dagger}(0)\} | \Omega \rangle$$

$$C(t) = \sum_{n} z_n z_n^{\dagger} e^{-E_n t}$$

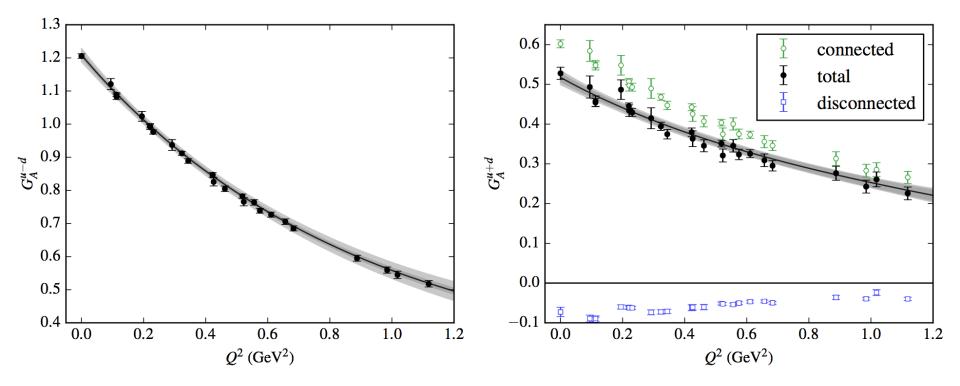
$$G_J(t) \equiv \frac{1}{\tau} \left[\frac{N_J(t+\tau)}{C(t+\tau)} - \frac{N_J(t)}{C(t)} \right]$$

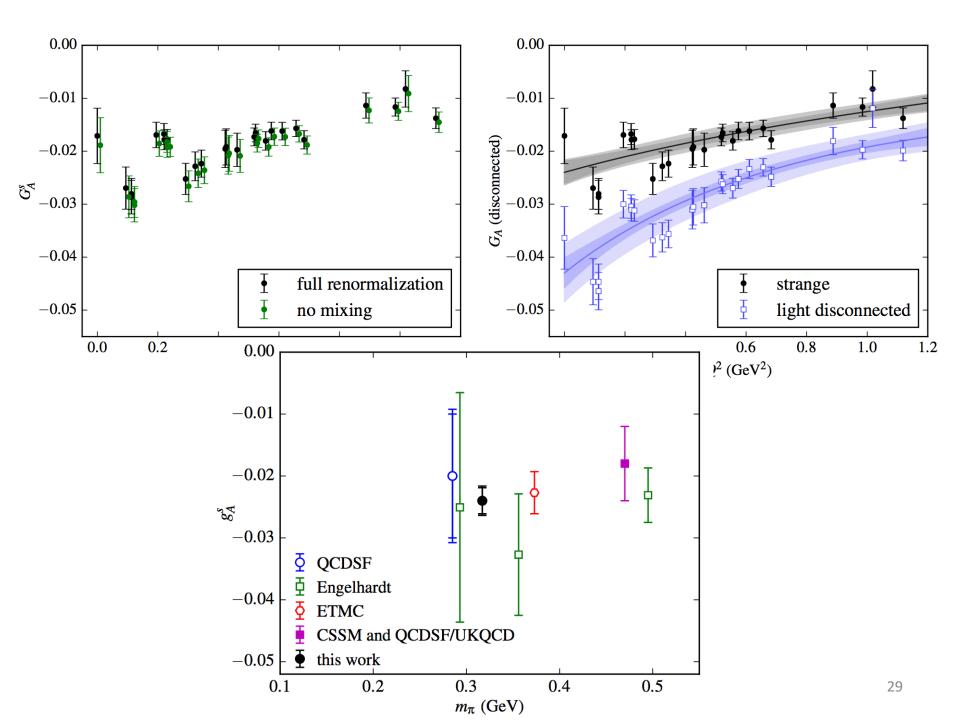
 $g_A^{LQCD}(\epsilon_\pi,a=0)$ $\mathsf{T}\epsilon_{\pi}^2 a^2$ 1.4 $g^{LQCD}_{A}(\epsilon^{phys}_{\pi},a/w_{0})$ $\mathsf{T}\epsilon_{\pi}^2 a^2$ 1.4 $g_A^{PDG} = 1.2723(23)$ Φ $g_A^{PDG} = 1.2723(23)$ Φ 1.31.3₿ $\left| b \right|_{1,2}$ $[b]{8}_{1.2}$ $g_A(\epsilon_\pi^{(130)},a/w_0)$ $m_{\pi} \sim 130 \text{ MeV}$ -**+** $g_A(\epsilon_{\pi}, a=0.09)$ $a\sim 0.09~{
m fm}$ 1.11.1 $m_{\pi} \sim 220 \text{ MeV}$ $g_A(\epsilon_\pi^{(220)},a/w_0)$ $g_A(\epsilon_{\pi}, a = 0.12)$ $a\sim 0.12~{
m fm}$ $m_{\pi} \sim 310 \text{ MeV}$ $g_A(\epsilon_{\pi}, a = 0.15)$ $a\sim 0.15~{
m fm}$ $g_A(\epsilon_\pi^{(310)},a/w_0)$ 1.0 1.0 0.01.0└ 0.00 0.05 0.10 0.150.200.250.10.20.3 0.4 0.50.6 0.7 0.8 $\epsilon_{\pi} = m_{\pi}/(4\pi F_{\pi})$ $(a/w_0)^2$ $g_A^{LQCD}(\epsilon_\pi,a=0)$ $g_A^{LQCD}(\epsilon_\pi^{phys},a/w_0)$ $\chi \epsilon_\pi^2 a^2$ 1.4 $\chi \epsilon_{\pi}^2 a^2$ 1.4 $g_A^{PDG} = 1.2723(23)$ $g_{A}^{PDG} = 1.2723(23)$ Φ Ф 1.3 1.3€ $\left| b \right|_{1.2}$ g_A 1.2 $g_A(\epsilon_{\pi}^{(130)}, a/w_0)$ $m_\pi \sim 130 \; {\rm MeV}$ $g_A(\epsilon_{\pi}, a = 0.09)$ $a\sim 0.09~{
m fm}$ 1.11.1 $m_{\pi} \sim 220 \text{ MeV}$ $g_A(\epsilon_\pi^{(220)},a/w_0)$ -**+** $g_A(\epsilon_\pi, a=0.12)$ $a\sim 0.12~{
m fm}$ Ŧ. $m_\pi \sim 310 \; {\rm MeV}$ $g_A(\epsilon_{\pi}^{(310)}, a/w_0)$ $g_A(\epsilon_{\pi}, a = 0.15)$ $a\sim 0.15~{
m fm}$ $1.0 \stackrel{[]}{=} 0.0$ 1.0└ 0.00 0.10.20.4 0.50.6 0.7 0.05 0.10 0.150.250.30.8 0.20 $\epsilon_{\pi} = m_{\pi}/(4\pi F_{\pi})$ $(a/w_0)^2$

$$g_A = 1.278(21)(26)$$
 26



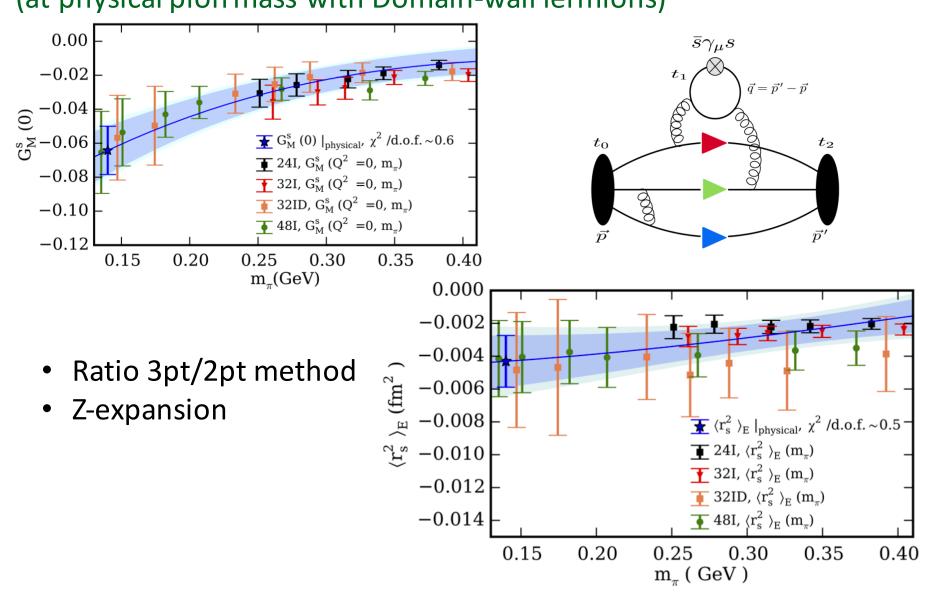
Up, down, and strange nucleon axial form factors Jeremy Green *et. al. Phys. Rev. D* 95, 114502 (2017)

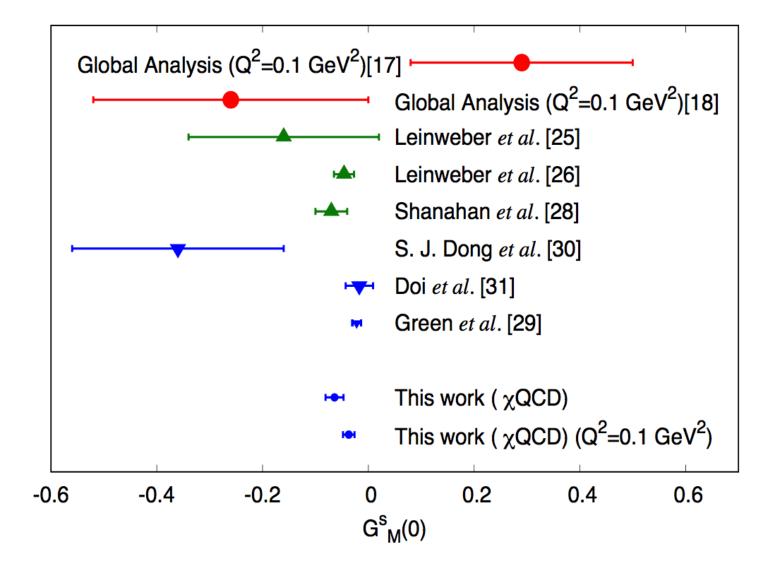




Strange quark magnetic moment of the nucleon

Raza Sufian, Phys. Rev. Lett.118.042001 (at physical pion mass with Domain-wall fermions)





Strange quark magnetic moment

More calculations:

- Nasreen Hasan et. al., arXiv:1611.01383 Nucleon Dirac and Pauli form factor
- S. Capitani*et. al.,* arXiv:1705.06186 Iso-vector axial form factors of the nucleon in two-flavour lattice QCD
- C. Alexandrou et. al., arXiv:1705.06186 The nucleon axial form factors using lattice QCD simulations with a physical value of the pion mass
- Chris Bouchard *et. al.,* Phys. Rev. D96, 014504 On the Feynman-Hellmann theorem in quantum field theory and the calculation of matrix elements
- Chris Bouchard *et. al.* –PoS(Lattice2016),160 Matrix elements from moments of correlation functions

Some more calculations -

J Liang *et. al.*, - Phys. Rev. D.96.034519 - Lattice Calculation of Nucleon Isovector Axial Charge with Improved Currents

Raza Sufian *et. al.,* arXiv:1705.05849 - Sea Quarks Contribution to the Nucleon Magnetic Moment and Charge Radius at the Physical Point

Tanmoy Bhattacharya et. al, Phys. Rev. D.92.094511 - Isovector and Isoscalar Tensor Charges of the Nucleon from Lattice QCD

Outlook

Immediate goals (JLab form factor program):

- ➢ Pion form factor at $Q^2 ≥ 6 \text{ GeV}^2$
- Extend to more ensembles with lighter pion masses , multiple volumes, multiple lattice spacing
- Take care of lattice artefacts
- Nucleon axial charge using distillation

Next:

Distribution amplitude,
TMDs, GPDs