Nucleon Resonance Studies with CLAS12

Spokespersons: R. Gothe, V. Mokeev, V. Burkert, P. Cole, K. Joo, and P. Stoler

Experiment Details

- Measure $N\pi$, $N\eta$, and $N\pi\pi$ electroproduction off an unpolarized proton target with an 11 GeV longitudinally polarized electron beam
- Measure the sets of correlated differential cross sections, exclusive structure functions for W [1.07, 3.0 GeV], Q^2 [3, 12 GeV2] and full angular coverage for all final hadrons

Experiment Goals

- Extraction of γ_vpN^* electrocouplings for prominent N^*, Δ^* states in the mass range W up to 3.0 GeV at the highest photon virtualities ever achieved, Q^2 up to 12 GeV2
- Exploration of many facets of strong QCD dynamics behind the generation of excited nucleons of different quantum numbers over full N^* spectrum
- Address the challenging open problems of the Standard Model on the nature of more than 98% of hadron mass, quark-gluon confinement, emergence of color charge from the results on γ_vpN^* electrocouplings obtained at the distances where the transition from the strong to perturbative QCD regimes takes place
Acceptance for π^0p and π^+n Electroproduction

Simulation: GEMC 4a.2.1 and COATJAVA 4a.8.2
Beam energy: 10.6 GeV, Torus: -75% and +75%
Target: LH2, Z-vertex position from -2.5 to 2.5 cm

- Detection acceptance depends only weakly on the torus polarity and solenoid current within CLAS12 (electron and one hadron detected)
- Acceptance is 45% - 75% when e' hits the forward detector and roughly 70% when e' hits the forward tagger (FT)
- Acceptance also depends only weakly on all kinematic variable: Q^2, W, θ^*_π, and ϕ^*_π
- Positive torus current polarity, e' outbending, is preferred to study the low Q^2 region

$3 GeV^2 < Q^2 < 6 GeV^2$
$1.1 GeV < W < 2.2 GeV$
Count Rates for $\pi^0 p$ and $\pi^+ n$ Electroproduction

- Physics EG, GEMC 4a.2.1, COATJAVA 4a.8.2, and CLAS12 nominal luminosity are used to estimate the **count rates / averaged number of events per bin** in 20 days of the run time.
- The bin sizes are $\Delta Q^2 = 1$ GeV2, $\Delta W = 20$ MeV, and 10 bins in both $\cos(\theta_{\pi}^*)$ and ϕ_{π}^*, resulting in a total of 1.2×10^5 bins.
- Possible **prescale factors** for the FT rates (small Q^2) are not taken into account here.

<table>
<thead>
<tr>
<th>Reaction torus/solenoid</th>
<th>$0<Q^2<2$</th>
<th>$2<Q^2<5$</th>
<th>$5<Q^2<8$</th>
<th>$8<Q^2<12$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\pi^0 p$ -75%/60%</td>
<td>3900 / 350K</td>
<td>35 / 2.1K</td>
<td>1.26 / 75</td>
<td>0.078 / 3.48</td>
</tr>
<tr>
<td>$\pi^0 p$ +75%/60%</td>
<td>9100 / 810K</td>
<td>37 / 2.2K</td>
<td>1.24 / 74</td>
<td>0.073 / 3.28</td>
</tr>
<tr>
<td>$\pi^+ n$ -75%/60%</td>
<td>6500 / 580K</td>
<td>55 / 3.3K</td>
<td>1.07 / 64</td>
<td>0.070 / 3.13</td>
</tr>
<tr>
<td>$\pi^+ n$ +75%/60%</td>
<td>6600 / 590K</td>
<td>52 / 3.1K</td>
<td>1.05 / 63</td>
<td>0.062 / 2.78</td>
</tr>
</tbody>
</table>

Q^2 in GeV2 and count rates in Hz
For $2 \text{ GeV}^2 < Q^2 < 12 \text{ GeV}^2$ almost no dependence on torus current polarity, while at $Q^2 < 2.0 \text{ GeV}^2$ positive (+75% or +100%) polarity is favored.
Count Rates for $\gamma_vp\rightarrow\pi^+\pi^-p$ Electroproduction

<table>
<thead>
<tr>
<th>Torus field B_T % from maximal</th>
<th>Solenoid field B_s % from maximal</th>
<th>Q^2-range GeV2</th>
<th>Acceptance %</th>
<th>Count Rate Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>+75</td>
<td>+60</td>
<td>2.0-5.0</td>
<td>18</td>
<td>32</td>
</tr>
<tr>
<td>-75</td>
<td>+60</td>
<td>2.0-5.0</td>
<td>17</td>
<td>31</td>
</tr>
<tr>
<td>+75</td>
<td>+60</td>
<td>5.0-12.0</td>
<td>19</td>
<td>1.0</td>
</tr>
<tr>
<td>-75</td>
<td>+60</td>
<td>5.0-12.0</td>
<td>18</td>
<td>0.9</td>
</tr>
<tr>
<td>+75</td>
<td>+60</td>
<td>0.02-12.0</td>
<td>12</td>
<td>13K</td>
</tr>
</tbody>
</table>

- Acceptances and count rates are for the leading π^- missing topology only
- About 99% of the count rates come from the low-photon-virtuality range $0.02 \text{ GeV}^2 < Q^2 < 2.0 \text{ GeV}^2$, FT might be prescaled.
- Preferred conditions
 - positive current for torus field below $Q^2 = 2.0 \text{ GeV}^2$, although no sensitivity to the torus polarity above $Q^2 = 2.0 \text{ GeV}^2$, and
 - torus current (100% or 75%)
First Publication: π^+n and π^0p Beam Asymmetries

20 day run, $L=10^{35}$ cm2 s$^{-1}$, results in 4-dim. (W,Q^2,θ,ϕ)-bins, bin grid: 12 ϕ bins, 8 θ bins, W-bin size 50 MeV, and Q^2-bin size 1.0 GeV2

- W: 1.07-1.7 GeV, Q^2: 3.0-6.0 GeV2
- Estimates for average value of beam asymmetry in a single (W,Q^2,θ,ϕ)-bin: $<A_{LU}> = 0.1$

One of the first publication related to $N\pi$ will be based on the beam asymmetry A_{LU} in $N\pi$ channels (unnormalized yields) that will be measured for the first time for $Q^2 > 3.3$ GeV2

- CLAS studies (I.G. Aznauryan et al., PRC 80, 055203 (2009)) have shown that the beam asymmetry is sensitive to the variation of γ_vpN^* electrocouplings
- New data on A_{LU} at 3.3 GeV$^2 < Q^2 < 6.0$ GeV2 will be analyzed within a) JLab/Yerevan UIM/DR reaction models based on γ_vpN^* electrocouplings extrapolated from the available CLAS data into the range of the aforementioned Q^2 adjusted to the data, and b) accounting for resonant contributions only
- A successful description of beam asymmetry data achieved with the same N^* parameters in the approaches a) and b) will allow us to pin down the kinematics domain of dominant resonance contributions
First Publication: \(\pi^+n/\pi^0p \) Cross Section Ratio

Projected statistical uncertainties in a single \((W,Q^2)\)-bin

- \(Q^2=3.5 \text{ GeV}^2 \)
- \(Q^2=4.5 \text{ GeV}^2 \)
- \(Q^2=5.5 \text{ GeV}^2 \)

\(\pi^+n/\pi^0p\) cross section ratio from CLAS

20 day run, \(L=10^{35} \text{ cm}^{-2} \text{ s}^{-1} \), results for 2-dim. \((W,Q^2)\)-bins after integration over all \(\phi \) and \(\theta \) from 0° to 55°, W-bin size 50 MeV, \(Q^2 \)-bin size 1.0 GeV²

Cross sections at \(Q^2 > 4.0 \text{ GeV}^2 \) are evaluated assuming the same \(Q^2 \)-dependence for \(\pi^+n \) and \(\pi^0p \)

- Beam asymmetry results should be augmented by measurements of unnormalized \(\pi^+n \) and \(\pi^0p \) yields accounting for acceptance differences, i.e. \(\pi^+n/\pi^0p \) cross section ratios that will be measured for the first time above \(Q^2 = 3.5 \text{ GeV}^2 \)

- Consistent description of asymmetries and cross section ratios with the same \(N^* \) parameters will support the preliminary estimates of electrocouplings for many resonances in the mass range <1.7 GeV at still unexplored photon virtualities 4.3-6.0 GeV²
Exclusive N* → KY Studies with CLAS12

Spokespersons: D.S. Carman, R. Gothe, V. Mokeev

E12-06-108A

Experiment Details

- Measure K⁺Λ and K⁺Σ⁰ electroproduction off an unpolarized proton target with an 11 GeV longitudinally polarized electron beam
- Measure differential cross sections, separated structure functions, induced and recoil hyperon polarization for W [1.6, 3.0 GeV], Q² [2, 12 GeV²], and cosθ⁺ [-1.0, 1.0]

Experiment Goals

- Extraction of γᵥNN* electrocoupling amplitudes for prominent N*, Δ* states that couple to KY final states – complementing the Nππ final state
- Search for evidence of hybrid baryon contributions through Q² evolution of electrocouplings
- Understand KY reaction dynamics and quark pair creation operators via polarization observables
KY Monte Carlo Studies

CLAS12 Simulation Studies:
\(\text{ep} \rightarrow \text{e}'\text{K}^+\text{Y}, \text{Y} = \Lambda, \Sigma^0 \)

Monte Carlo:
GEMC: 4a.2.1

Reconstruction:
COATJAVA: 4a.8.2

Conditions:
\(E_b = 10.6 \text{ GeV} \)
Torus: \(\pm 60\%, \pm 75\%, \pm 100\% \)
Solenoid: 60%, 80%
\(W = 1.6 – 3.0 \text{ GeV} \)
\(Q^2 = 2.0 – 12.0 \text{ GeV}^2 \)
\(\cos \theta_{K^*} = [-1.0,1.0] \)
5-cm LH$_2$ target

Event Generator:
Modified RPR/MSU model

Comparison of generated and reconstructed kinematics for final state particles: \(\text{e}', \text{K}^+, \text{p}, \pi^- \)

Torus: 100%, solenoid: 60%
KY Torus Field Studies

Missing Mass $\text{MM}(e'K^+)$ and Resolution σ_{MM}

Note:
Simulations do not include radiative effects or backgrounds
\Rightarrow reality will be worse than demonstrated here

Torus 75% Torus 100%

Torus at 75% field limits kinematic reach in Q^2 as KY final states cannot be separated much beyond 6 GeV2
KY Rate Studies – Spring 2018 Run

Assuming that spring RG-A run amounts to 20 PAC days:

- Estimate expected yields at $Q^2=1.5 \text{ GeV}^2$ and 5.5 GeV^2 for $E_b=10.6 \text{ GeV}$ compared to yields from the CLAS elf analysis at 1.8 GeV^2

- The statistics allow for precision electroproduction measurements at lower Q^2 even in the exclusive channels and for viable measurements at high Q^2

Average Acceptance
- $e'K^+ : 10 \rightarrow 35\%$
- $e'K^+p : 5 \rightarrow 25\%$
- $e'p\pi^- : 5 \rightarrow 15\%$

larger at $\cos\theta_{K^*} > 0$
smaller at $\cos\theta_{K^*} < 0$

$\Delta W=50 \text{ MeV}$, $\Delta Q^2=1 \text{ GeV}^2$, $\Delta \cos\theta_{K^*}=0.2$, $\Delta \phi=45^\circ$, Torus 100%, and Solenoid 60%
The first publication related to KY will be based on measurements of unnormalized yields ⇒ hyperon recoil and beam-recoil transferred polarization.

Previous CLAS studies (PRL, CERN Courier) have shown that transferred polarization is sensitive to the quark-pair creation operator ss.

Recoil polarization data at $Q^2 = 0$ and $Q^2 > 0$ show differences, likely due to γ_L^*. A 20 day run will allow for precision measurements of hyperon polarization observables at $Q^2 < 3\text{GeV}^2$ to shed light on these issues.

\[\text{\textbf{A beam-recoil transferred polarization}} \]
Search for Hybrid Baryons with CLAS12

Experiment Details

- Measure $K^+\Lambda$, $K^+\Sigma^0$, and $N\pi^+\pi^-$ electroproduction off an unpolarized proton target with longitudinally polarized electron beam at low Q^2
- Measure differential cross sections, separated structure functions, and induced and recoil hyperon polarization for $W [1.6,3.0 \text{ GeV}]$, $Q^2 [0.02,3 \text{ GeV}^2]$, and $\cos \theta_{K_{cm}} [-1.0,1.0]$

Experiment Goals

- Measure $\gamma_{\nu}NN^*$ electrocoupling amplitudes for N^*, Δ^* states that couple to KY or $N\pi\pi$ final state, in kinematical regions complementary to E12-06-108A and E12-09-003 proposals
- Search for evidence of hybrid baryon contributions through low Q^2 evolution of the $\gamma_{\nu}NN^*$ electrocouplings
Event Simulation in CLAS12

K⁺ missing mass resolution

- **E_b = 8.8 GeV**
- Torus 100%

- **σ = 15 MeV**
- **σ = 13 MeV**

Minimum measurable Q²

- **E_b = 10.6 GeV**
- **0.2 GeV²**

Trigger Conditions:
- One electron in CLAS12 or one electron in the FT and one (potentially prescaled) or two charged particles in CLAS12
- Integrated reconstructed count rate of 90 Hz for W [1.6,3.0 GeV], Q² [0.2,3.0 GeV²] and full angular coverage for all final hadrons

Acceptance

<table>
<thead>
<tr>
<th>E_b</th>
<th>one missing hadron</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.6 GeV</td>
<td>33%</td>
</tr>
</tbody>
</table>
Transition Form Factor of the η' with CLAS12

Experiment Goals

- Many physics issues suggest physics beyond the Standard Model
 - Currently a promising candidate to provide a signal for physics beyond SM is the muon anomaly ($a_\mu = (g - 2)/2$)
 - Largest uncertainty arise from the hadronic quantum correction

- HLbL correction can be improved by measuring the time-like transition form factor at low-to-moderate momenta
 - Using electroproduction $ep \rightarrow e'pX \rightarrow e'p\gamma*\gamma \rightarrow e'p e^+ e^- \gamma$

- Improvements to the π^0, η, η' TFF can improve precision of the HLbL correction by 14%, 23%, and 15%, respectively [2] and the foundation of strong QCD theory

η' Generation with GiBUU

Simulation: GEMC4a.2.0 and COATJava4a.7.3
Generated: $ep \rightarrow e'\eta'p \rightarrow e'^+e^-p\gamma$
Reconstructed: $ep \rightarrow e'\eta'p \rightarrow e'^+e^-p(\gamma)$

Background from choosing incorrect e^- in $M_x(pe^-)$

Yield per 28 MeV

Yield per 9.6 MeV
η’ Reconstruction with CLAS12

Generated: $ep \rightarrow e'\eta'p \rightarrow e'^+e'^-\gamma$
Reconstructed: $ep \rightarrow e'\eta'p \rightarrow e'^+e'^-p(\gamma)$
Detectors used: FT, DC, HTCC, ECAL

Background from choosing incorrect e^- in $M_x(pe^-)$

Yield per 28 MeV

$M_x(pe^-)$ in GeV

Yield per 9.6 MeV

$M(e^+e^-)$ in GeV

Yield per 28 MeV
\[\eta' \text{ Dalitz Decay Event Yields in 20 Days} \]

Reconstructed: \(ep \rightarrow e' \eta' p \rightarrow e'^+ e^- p(\gamma) \)

- Torus -75%
- Solenoid 60%
- Errors are statistical
- Area accessible in previous TFF determination

\(\sim 4x \) greater statistics than best measurement

- Torus 100%
- Solenoid 60%
- Errors are statistical
- Area accessible in previous TFF determination

\(\sim 1.7x \) greater statistics than best measurement

M. Kunkel
First Experiment Hadron Structure Group

Manpower, Affiliation, and Association

Baryon Structure (E12-09-003, E12-06-108A, E12-16-010)

- **PI:** A. D’Angelo (INFN Rom), V. Burkert (JLAB), D. Carman (JLAB), P. Cole (ISU), E. Golovach, (MSU), R. Gothe (USC), K. Joo (UCONN), V. Mokeev (JLAB), and P. Stoler (RPI)
- **Senior Scientists:** B. Ishkhanov (MSU), L. Lanza (INFN Rom), N. Markov (UCONN), and E. Isupov (MSU)
- **Students:** V. Klimenko (MSU), K. Neupane (USC), and D. Shukla (UCONN)

Meson Structure (E12-06-108B)

- **PI:** M. Kunkel (FZ Juelich) and D. Lersch (FZ Juelich)
- **Senior Scientists:** J. Ritman (FZ Juelich) and S. Schadmand (FZ Juelich)