RECOMMENDATION:
We recommend a high-energy high-luminosity polarized EIC as the highest priority for new facility construction following the completion of FRIB.

Initiatives:
Theory
Detector & Accelerator R&D

Detector R&D money ~1.3M/yr since 2011; significant increase anticipated soon.

Anticipated Now:
NEW Money for EIC Accelerator R&D already assigned $7m/yr

http://science.energy.gov/np/reports
Electron Ion Collider: The next QCD frontier

Understanding the Glue that Binds Us All

Why the EIC? \(\Rightarrow\) “Gluon Imaging”

To understand the role of gluons in binding quarks & gluons into Nucleons and Nuclei
QCD: The Holy Grail of Quantum Field Theories

• QCD: “nearly perfect” theory that explains nature’s strong interactions, is a fundamental quantum theory of quarks and gluon fields

• QCD is rich with symmetries:

\[SU(3)_C \times SU(3)_L \times SU(3)_R \times U(1)_A \times U(1)_B \]

(1) \hspace{1cm} (2) \hspace{1cm} (3)

(1) Gauge “color” symmetry: unbroken but confined
(2) Global “chiral” flavor symmetry: exact for massless quarks
(3) Baryon number and axial charge (massless quarks) conservation
(4) Scale invariance for massless quarks and gluon fields
(5) Discrete C, P & T symmetries

• Chiral, Axial, Scale & P&T symmetries broken by quantum effects: Most of the visible matter in the Universe emerges as a result

• Inherent in QCD are the deepest aspects of relativistic quantum field theories: (confinement, asymptotic freedom, anomalies, spontaneous breaking of chiral symmetry) → all depend on non-linear dynamics in QCD
Non-linear Structure of QCD: Fundamental Consequences

- Quark (Color) confinement:
 - Consequence of nonlinear gluon self-interactions
 - Unique property of the strong interaction

- Strong Quark-Gluon Interactions:
 - Confined motion of quarks and gluons – Transverse Momentum Dependent Parton Distributions (TMDs)
 - Confined spatial correlations of quark and gluon distributions – Generalized Parton Distributions (GPDs)

- Ultra-dense color (gluon) fields:
 - Is there a universal many-body structure due to ultra-dense color fields at the core of all hadrons and nuclei?

All expected to be under the “femtoscope” called the EIC
QCD Landscape to be explored by EIC

QCD at high resolution \((Q^2)\) — weakly correlated quarks and gluons are well-described

Strong QCD dynamics creates many-body correlations between quarks and gluons → hadron structure emerges

EIC will systematically explore correlations in this region.

An exciting opportunity: Observation by EIC of a new regime in QCD of weakly coupled high density matter
Emergent Dynamics in QCD

Without gluons, there would be no nucleons,

no atomic nuclei… no visible world!

- Massless gluons & almost massless quarks, *through their interactions,* generate most of the mass of the nucleons

- Gluons carry ~50% of the proton’s momentum, a significant fraction of the *nucleon’s spin,* and are essential for the dynamics of confined partons

- Properties of hadrons are *emergent phenomena* resulting not only from the equation of motion but are also inextricably tied to the properties of the QCD vacuum. Striking examples besides confinement are spontaneous symmetry breaking and anomalies

- The nucleon-nucleon forces emerge from quark-gluon interactions: how this happens remains a mystery
Emergent Dynamics in QCD

Without gluons, there would be no nucleons,

no atomic nuclei… no visible world!

- Massless gluons & almost massless quarks, *through their interactions,* generate most of the mass of the nucleons
- Gluons carry ~50% of the proton’s momentum, a significant fraction of the *nucleon’s spin,* and are essential for the dynamics of confined partons
- Properties of hadrons are *emergent phenomena* resulting not only from the equation of motion but are also inextricably tied to the properties of the QCD vacuum. Striking examples besides confinement are spontaneous symmetry breaking and anomalies
- The nucleon-nucleon forces emerge from quark-gluon interactions: how this happens remains a mystery

Experimental insight and guidance crucial for complete understanding of how hadrons & nuclei emerge from quarks and gluons
A new facility is needed to investigate, with precision, the dynamics of gluons & sea quarks and their role in the structure of visible matter.

How are the sea quarks and gluons, and their spins, distributed in space and momentum inside the nucleon?

How do the nucleon properties emerge from them and their interactions?

How do color-charged quarks and gluons, and colorless jets, interact with a nuclear medium?

How do the confined hadronic states emerge from these quarks and gluons?

How do the quark-gluon interactions create nuclear binding?

How does a dense nuclear environment affect the quarks and gluons, their correlations, and their interactions?

What happens to the gluon density in nuclei? Does it saturate at high energy, giving rise to a gluonic matter with universal properties in all nuclei, even the proton?
The Electron Ion Collider

Two options of realization!

For e-A collisions at the EIC:
✓ Wide range in nuclei
✓ Luminosity per nucleon same as e-p
✓ Variable center of mass energy

For e-N collisions at the EIC:
✓ Polarized beams: e, p, d/3He
✓ e beam 5-10(20) GeV
✓ Luminosity $L_{ep} \approx 10^{33-34}$ cm$^{-2}$ sec$^{-1}$
 100-1000 times HERA
✓ 20-100 (140) GeV
 Variable CoM

1212.1701.v3
The Electron Ion Collider

Two options of realization!

For e-N collisions at the EIC:
✓ Polarized beams: e, p, d/\(^3\)He
✓ e beam 5-10(20) GeV
✓ Luminosity \(L_{\text{ep}} \sim 10^{33-34} \text{ cm}^{-2}\text{sec}^{-1}\)
 100-1000 times HERA
✓ 20-100 (140) GeV Variable CoM

For e-A collisions at the EIC:
✓ Wide range in nuclei
✓ Luminosity per nucleon same as e-p
✓ Variable center of mass energy

World’s first
Polarized electron-proton/light ion and electron-Nucleus collider

Both designs use DOE’s significant investments in infrastructure
EIC: Kinematic reach & properties

For e-N collisions at the EIC:
✓ Polarized beams: e, p, d/³He
✓ Variable center of mass energy
✓ Wide Q^2 range \rightarrow evolution
✓ Wide x range \rightarrow spanning valence to low-x physics

For e-A collisions at the EIC:
✓ Wide range in nuclei
✓ Lum. per nucleon same as e-p
✓ Variable center of mass energy
✓ Wide x range (evolution)
✓ Wide x region (reach high gluon densities)
Uniqueness of EIC among all DIS Facilities

All DIS facilities in the world.

However, if we ask for:
Uniqueness of EIC among all DIS Facilities

All DIS facilities in the world.

However, if we ask for:

- high luminosity & wide reach in √s
Uniqueness of EIC among all DIS Facilities

All DIS facilities in the world.

However, if we ask for:

- high luminosity & wide reach in \sqrt{s}
- polarized lepton & hadron beams
- nuclear beams

EIC stands out as unique facility ...
Nucleon Spin: An emergent phenomena

"Helicity sum rule"

\[
\frac{1}{2} \hbar = \frac{1}{2} \Delta \Sigma + \Delta G + \sum_q L^z_q + L^z_g
\]

(25 +/- 3%) + (25 +/- 25%) + ???

RECENT: Spin on the Lattice:

- Gluon’s spin contribution on Lattice: \(S_G = 0.5(0.1) \)
 Yi-Bo Yang et al. PRL 118, 102001 (2017)

- \(J_q \) calculated on Lattice QCD:
 QCD Collaboration, PRD91, 014505, 2015
What does a proton look like with increasing energy?

One of several possible scenarios: a pion cloud model

A parton core in the proton gets increasingly surrounded by a meson cloud with decreasing x

→ large impact on gluon and sea-quark observables

What do we expect to see:

- $q\bar{q}$ pairs (sea quarks) generated at small(ish)-x are predicted to be unpolarized
- gluons generated from sea quarks are unpolarized

→ needed:
 - high precision measurement of flavor separated polarized quark and gluon distributions as functions of x
 - high precision spatial imaging: Gluon radius ~ sea-quark radius?

What happens in the gluon dominated small-x regime?

- possible scenario: lumpy glue

EIC needs to and will explore the dynamical spatial structure of hadrons
Proton as a laboratory for QCD

3D structure of hadrons in momentum and position space....
Understanding Nucleon Spin

“Helicity sum rule”

\[
\frac{1}{2} h = \frac{1}{2} \Delta \Sigma + \Delta G + \sum_q L^z_q + L^z_g
\]

- quark contribution
- gluon contribution
- orbital angular momentum

EIC projected measurements:
precise determination of polarized PDFs of quark sea and gluons ➔ precision ΔG and $\Delta \Sigma$
➔ A clear idea of the magnitude of $\sum L^z_q + L^z_g$

Spin and Lattice: Recent Activities

- Gluon’s spin contribution on Lattice: $S_G = 0.5(0.1)$
 Yi-Bo Yang et al. PRL 118, 102001 (2017)

- J_q calculated on Lattice QCD:
 QCD Collaboration, PRD91, 014505, 2015
3-Dimensional Imaging Quarks and Gluons

Wigner functions $W(x, b_T, k_T)$ offer unprecedented insight into confinement and chiral symmetry breaking.

Spin-dependent 3D momentum space images from semi-inclusive scattering \rightarrow TMDs

Spin-dependent 2D coordinate space (transverse) + 1D (longitudinal momentum) images from exclusive scattering \rightarrow GPDs

Possible direct access to gluon Wigner function through diffractive di-jet measurements at an EIC: Y. Hatta et al. PRL 16, 022301 (2016)
2+1 D partonic image of the proton with the EIC

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) + 1D (longitudinal momentum) images from exclusive scattering

Transverse Momentum Distributions
2+1 D partonic image of the proton with the EIC

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) + 1D (longitudinal momentum) images from exclusive scattering

Transverse Momentum Distributions

u-Quark
2+1 D partonic image of the proton with the EIC

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) + 1D (longitudinal momentum) images from exclusive scattering

Transverse Momentum Distributions

u-Quark

Transverse Position Distributions

sea-quarks
unpolarized polarized
2+1 D partonic image of the proton with the EIC

Spin-dependent 3D momentum space images from semi-inclusive scattering

Spin-dependent 2D coordinate space (transverse) + 1D (longitudinal momentum) images from exclusive scattering

Transverse Momentum Distributions

Transverse Position Distributions

Gluons

Quark transverse momentum (GeV)
Use of Nuclei as a Laboratory for QCD:
Nuclear binding

- Measurement of the kinematics of the spectator nucleon indicator of the strength and (hence) the nature of its binding with the in-play nucleon(s):
 - quark-gluon origin of the nuclear binding

Tag the recoil proton:
Study the neutron’s q-g spin structure function.
Also for other few body nuclei

Neutron Spin Structure
EIC: impact on the knowledge of 1D Nuclear PDFs

Ratio of Parton Distribution Functions of Pb over Proton:
- Without EIC, large uncertainties in nuclear sea quarks and gluons
 ➔ With EIC significantly reduced uncertainties
- Complementary to RHIC and LHC pA data. Provides information on initial state for heavy ion collisions.
- Does the nucleus behave like a proton at low-x? ➔ such color correlations relevant to the understanding of astronomical objects
Emergence of Hadrons from Partons

Nucleus as a Femtometer sized filter

Unprecedented ν, the virtual photon energy range @ EIC: *precision & control*

$$\nu = \frac{Q^2}{2mx}$$

Control of ν by selecting kinematics;
Also under control the nuclear size.

(colored) Quark passing through cold QCD matter emerges as color-neutral hadron \Rightarrow
Clues to color-confinement?

Energy loss by light vs. heavy quarks:

Identify π vs. D^0 (charm) mesons in e-A collisions: Understand energy loss of light vs. heavy quarks traversing the cold nuclear matter:
Connect to energy loss in Hot QCD

Need the collider energy of EIC and its control on parton kinematics
What do we learn from low-x studies?

What tames the low-x rise?

- New evolution eqn.s @ low x & moderate Q^2
- Saturation Scale $Q_s(x)$ where gluon emission and recombination comparable

First observation of gluon recombination effects in nuclei:

\rightarrow leading to a **collective** gluonic system!

First observation of g-g recombination in **different** nuclei

\rightarrow Is this a universal property?

\rightarrow Is the **Color Glass Condensate** the correct effective theory?
How to explore/study this new phase of matter?
(multi-TeV) e-p collider OR a (multi-10s GeV) e-A collider

Advantage of nucleus

\[(Q_s^A)^2 \approx cQ_0^2 \left[\frac{A}{x} \right]^{1/3} \]

\[L \sim (2m_Nx)^{-1} > 2R_A \sim A^{1/3} \]
How to explore/study this new phase of matter?

(multi-TeV) e-p collider OR a (multi-10s GeV) e-A collider

Advantage of nucleus \rightarrow

\[
(Q^A_s)^2 \approx cQ^2_0 \left[\frac{A}{x} \right]^{1/3}
\]

\[
L \sim (2m_N x)^{-1} > 2 R_A \sim A^{1/3}
\]

Teaney, Kowalski Kovchegov et al.
How to explore/study this new phase of matter?

(multi-TeV) e-p collider OR a (multi-10s GeV) e-A collider

Advantage of nucleus →

Teaney, Kowalski, Kovchegov et al.
How to explore/study this new phase of matter?

(multi-TeV) e-p collider OR a (multi-10s GeV) e-A collider

Advantage of nucleus →

Enhancement of Q_S with A:
Saturation regime reached at significantly lower energy (read: “cost”) in nuclei.
Exp. Signal for Saturation

Di-hadron Correlations: \[e + A \rightarrow e' + h_1 + h_2 + X \]

Comparison between
➢ e-A with saturation (red filled),
➢ e-p non-saturation (black full points), and
➢ e-A non-Saturation model (black-hollow points)

arXiv: 1708.01527
Summary: EIC Physics:
CM vs. Luminosity vs. Integrated luminosity

- Internal Landscape of Nuclei
- Spin and Flavor Structure of the Nucleons and Nuclei
- Tomography (p/A)
 Transverse Momentum Distribution and Spatial Imaging
- QCD at Extreme Parton Densities - Saturation
REALIZATION.....

Detector R&D program + EIC User Group formation → Seeds for future experimental collaboration

Current Detector Design Ideas

The National Academy of Science (NAS- NRC) Review
The EIC Users Group: EICUG.ORG

(no students included as of yet)

731 collaborators, 29 countries, 169 institutions... (January 2018)

Map of institution’s locations
New physics for EIC beyond the White Paper:

- Impact of super-precise PDFs in $x > 0.0$, $1 < Q^2 < 100$ GeV2 for future Higgs studies (some insight through LHeC studies, but serious effort on EIC beginning now).
- What role would TMDs in e-p play in W-Production at LHC?

- Heavy quark and quarkonia (c, b quarks) studies beyond HERA, with 100-1000 times luminosities (??) Does polarization of hadron play any role?

- Quark Exotica: 4,5,6 quark systems…?

- **Internal structure of jets** with variability of CM 50-140 GeV2, in comparison with HERA, Tevatron & LHC energies, and with controlled electron & proton polarizations (jet fragmentation studies) aided by knowledge from e+e- physics at BaBar/Belle & in future Super-Belle (“Collins Functions”)

- Jet propagation in nuclei… energy loss in cold QCD medium: a topic interest

- Initial state affects QGP formation!….. p-A, d-A, A-A at RHIC and LHC: many puzzles

- Gluon TMDs at low-x!

See: http://www.lnf.infn.it/conference/2016/3DPDF/scientific-topics.php
Requirement are mostly site-independent with some slight differences in the forward region (IR integration).

In Short:

- Hermetic detector, low mass inner tracking, good PID (e and π/K/p) in wide range, calorimetry
- Moderate radiation hardness requirements, low pile-up, low multiplicity
EIC Detector Concepts

“ePHENIX”
EIC Detector Concepts

“ePHENIX”

“BEAST”
EIC Detector Concepts

“ePHENIX”

ANL’s: “SiEIC Detector” Si-tracker & Precision calorimetry: particle flow detector concept

“BEAST”
INT Program 2010 → EIC in the LRP2015

• Next LRP in ~2020/21, just before EIC Construction could begin ➔ We need a updating of the EIC physics case for that, hopefully with additional details and new physics input....
A 7-week program "Probing Nucleons and Nuclei in High Energy Collisions" dedicated to the physics of the Electron Ion Collider has been approved by the Institute for Nuclear Theory in Seattle with the tentative dates of October 1 - November 16, 2018. The topics to be covered include Spin and Three-Dimensional Structure of the Nucleon (GPDs, TMDs, longitudinal spin) and QCD in a Nucleus (small-x physics and saturation, connections to heavy ions, large-x physics in a nucleus).

The program organizers will be Yoshitaka Hatta, Yuri Kovchegov, Cyrille Marquet, and Alexei Prokudin. They plan to have ample discussion time and lectures aimed at young researchers. Both theorists and experimentalists are welcome to participate in the program. Young researchers, women and underrepresented minorities are strongly encouraged to apply.
NP’s long history of Long Range Plans (LRP)

NP: Nuclear Physics

NSAC: Nuclear Science Advisory Committee
NP’s long history of Long Range Plans (LRP)

NSAC: Nuclear Science Advisory Committee

NP: Nuclear Physics
Assumption: “Modest Growth” → 1.6% growth/year above constant effort

Figure 10.4: DOE budget in FY 2015 dollars for the Modest Growth scenario.
Path forward for the EIC:

- DOE sanctioned a science Review by National Academy of Science of EIC
 - Expect report by April/May 2018

- Positive NAS review will trigger the DOE’s CD process
 - CD0 (acceptance of the critical need for science by DOE) FY19
 - EIC-Proposal’s Technical & Cost review → FY20 (site selection)(/)
 - CD1 requires site selection
 - **Major Construction funds (“CD3”) by 2022/23”**
 - Assuming 1.6% sustained increase over inflation of the next several years (Long Range Plan)
 - Consistent with the past 10 years of NP funding increases in the US
Critical Decision Process DOE

PROJECT ACQUISITION PROCESS AND CRITICAL DECISIONS

<table>
<thead>
<tr>
<th>Project Planning Phase</th>
<th>Project Execution Phase</th>
<th>Mission Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconceptual Planning</td>
<td>Conceptual Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Preliminary Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Final Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construction</td>
<td></td>
</tr>
</tbody>
</table>

- **CD-0**: Approve Mission Need
- **CD-1**: Approve Preliminary Baseline Range
- **CD-2**: Approve Performance Baseline
- **CD-3**: Approve Start of Construction
- **CD-4**: Approve Start of Operations or Project Closeout

Actions Authorized by Critical Decision Approval

- **CD-0**: Proceed with conceptual design using program funds, Request PED funding
- **CD-1**: Allow expenditure of PED funds for design
- **CD-2**: Establish baseline budget for construction, Continue design, Request construction funding
- **CD-3**: Approve expenditure of funds for construction
- **CD-4**: Allow start of operations or project closeout

PED: Project Engineering & Design
Concluding thoughts & perspective:

The EIC (with its precision and control) will profoundly impact our understanding of the many body structure of nucleons and nuclei in terms of sea quarks & gluons → The bridge between sea quark/gluons to Nuclei

The EIC will enable IMAGES of yet unexplored regions of phase spaces in QCD with its high luminosity/energy, nuclei & beam polarization → High potential for discovery

Positive National academy report → critical decision process at the DOE

Many aspects of the physics more close attention: LIGHT ION BEAMS at EIC is one of them. → Not just physics but also associated polarimetry, polarized source development. Pay attention and contribute!

EIC Users Group has been formed: eicug.org

Please register yourself as a user of this group

Next July 31-Aug 4, 2018 at Catholic American University, Washington DC
THANK YOU

Thanks to many of my EIC Collaborators and Enthusiasts who led many of the studies presented in this talk

Without the EIC White Paper Writing Group the EIC White Paper would not have existed.

Special thanks to Dr. Jianwei Qiu and Prof. Zein-Eddine Meziani, my Co-Editors for the EIC White Paper

The eRHIC and JLEIC machine design teams

Also gratefully acknowledge recent input from: M. Diefenthaler, R. Ent, R. Milner, R. Yoshida
Thank you.