BSM Physics at the LHC, HERA

Few topics that could be interesting for EIC

Elisabetta Gallo
19/12/2018
For HERA results

Results taken from old slides
Leptoquarks

Zeus 1994-1996

$y_{DA} > 0.25$

$Q_{DA}^2 > 5000 \text{ GeV}^2$

$0.05 \cdot dN/dk_{DA}$

10^{-2}

10^{-1}

10^0

10^1

10^2

10^3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

$M_{LQ} (\text{TeV})$

10^{-2}

10^{-1}

10^0

10^1

10^2

10^3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

$S_{1/2}^L$

Zeus $e^+p (498 \text{ pb}^{-1})$

H1 e^+p

ATLAS pair prod.

L3 indirect limit

Desy.

| BSM at LHC, HERA | E. Gallo 19/12/2017, EIC meeting
Isolated leptons at HERA

Analysis is optimized for the main SM process which is W production

Excess at high P_T^X observed by H1 in e^+p collisions
Isolated leptons at HERA

No excess seen by ZEUS, events analyzed in terms of anomalous single top production at HERA I

Some possible diagrams in R-parity violation SUSY to explain the H1 excess
Multileptons in H1 and doubly-charged Higgs

Excess of events in 2e, 3e in H1, explanation could have been doubly-charged Higgs. Limits set at the end of HERA.
Quark radius, NC and CC cross sections

ZEUS

<table>
<thead>
<tr>
<th>σ/σ_{SM}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q^2 (GeV2)</td>
</tr>
</tbody>
</table>

Charged Current e^+p Scattering

Limits on W_R around 200 GeV

$Q^2 > 400$ GeV2

$y < 0.9$
LHC results

Results taken from slides at recent conferences on whatever is coupling to a lepton and a quark
LHC

LHC luminosity

- Run 1: 2010-2012 at $\sqrt{s} = 7.8$ TeV
- Run 2: 2015-2018 at $\sqrt{s} = 13$ TeV
- The increased luminosity and c.m. energy has boosted BSM searches at the LHC.
- Ratio of parton luminosities.

First of all I am not an expert, at DESY we do exotica, but different searches.

- I collected few results/slides which I thought important for ep physics.
- Many different searches, recently focused on dark matter, SUSY, heavy resonances (boosted techniques), long-lived particles.
- More than 100 Exotica papers in ATLAS/CMS only in 2016.
Searches at CMS

CMS Preliminary

- **Heavy Gauge Bosons**
 - SSM Z'(tt)
 - SSM Z'(jj)
 - SSM Z'(ee) ± Z' (μμ)
 - SSM W'(jj)
 - SSM Z'(bb)

- **Excited Fermions**
 - α' (M=Δ)
 - μ' (M=Δ)
 - α' (qg)
 - α'(qq) / b'

- **Multijet Resonances**
 - coloron(Δ) x2
 - coloron(6j) x2
 - gluino(Δ) x2
 - gluino(6j) x2

- **Large Extra Dimensions**
 - dijets, A+ LL/RR
 - dijets, A- LL/RR
 - dimuons, A+ LL/LIM
 - dimuons, A- LIM
 - dielectrons, A+ LL/LIM
 - dielectrons, A- LIM
 - single e, A HnCM
 - single μ, A HnCM
 - inclusive jets, A+
 - inclusive jets, A-

13 TeV

8 TeV

Leptoquarks

RS Gravitons

- RS1(Δ j), k=0.1
- RS1(Δ j), k=0.1
- RS1(Δ j), k=0.1
Searches at ATLAS, more recent compilation

<table>
<thead>
<tr>
<th>Model</th>
<th>(\ell\gamma)</th>
<th>Jests</th>
<th>(E_{T}^{miss})</th>
<th>Limit (95% CL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD (G_{\gamma} + V)</td>
<td>(0, \pm 1)</td>
<td>3.6</td>
<td>3.6</td>
<td>7.25 TeV</td>
</tr>
<tr>
<td>ADD (R^{\text{Higgs}} + V)</td>
<td>(3)</td>
<td>3.6</td>
<td>3.6</td>
<td>6.87 TeV</td>
</tr>
<tr>
<td>ADD (G_{\gamma} + V)</td>
<td>(3)</td>
<td>3.6</td>
<td>3.6</td>
<td>6.27 TeV</td>
</tr>
<tr>
<td>ADD (R^{\text{Higgs}} + V)</td>
<td>(3)</td>
<td>3.6</td>
<td>3.6</td>
<td>5.38 TeV</td>
</tr>
<tr>
<td>(R^{\text{Higgs}} + V)</td>
<td>(3)</td>
<td>3.6</td>
<td>3.6</td>
<td>5.38 TeV</td>
</tr>
</tbody>
</table>

Extra bosons

- \(W^{\pm} \rightarrow WW \rightarrow e\nu\) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)
- \(Z^{0} \rightarrow WW \rightarrow e\nu\) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)

Higgs bosons

- \(H^{0} \rightarrow WW \rightarrow e\nu\) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)
- \(H^{0} \rightarrow ZZ \rightarrow e\nu\) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)

CL

- 0 \(\gamma \) jets
- 0 \(\ell\gamma \) jets

QCD

- 2 \(\ell\gamma \) jets
- 3 \(\ell\gamma \) jets

Other

- \(Z^{\pm} \rightarrow \ell \ell \) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)
- \(\ell \ell \rightarrow \ell \ell \) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)

Other

- \(Z^{\pm} \rightarrow \ell \ell \) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)
- \(\ell \ell \rightarrow \ell \ell \) (with \(\ell\gamma \) for \(\ell\gamma \) and Jests)
Search for Leptoquarks in pairs

Use of BRW model, assume narrow resonances.
Searches in 1st, 2nd, 3rd generation.
The limit depends on the branching ratio β, and not on the coupling to lq, λ, this is opposite to ep.

From slides at SUSY conference at Mumbai
Recently a lot of interest

Consistent set of anomalies observed recently in flavour:

1) $b \rightarrow c$, charged current, tau versus other lepton

Observed by 3 experiments

Plots taken from a seminar from Isidori at a CMS meeting
Recently a lot of interest

Consistent set of anomalies observed recently in flavour:

2) $b \rightarrow s$, neutral currents, muon versus electron

Anomalies observed in angular distributions and other observables by LHCb. Results and fits seem to point to the fact that there could be new physics in $b \rightarrow s\mu\mu$, and not in $b \rightarrow s\mu\mu$.
Recently a lot of interest

Anomalies are all seen in lepton-quark couplings. Explanation could be a LQ coupling to 3rd generation.

| BSM at LHC, HERA | E. Gallo 19/12/2017, EIC meeting |
LQ searches, pair and single production

At high mass, single LQ production dominates over pair production, the crossing point depends on λ and the quark generation.
Search for heavy neutrinos N_R, W_R

At HERA

Stringent limits on W_R
SUSY R-parity violation

LHC started to look for RP-conserving SUSY, due to the very clear signature of missing transverse energy.

But recently they have started looking also for RPV SUSY, example here.
Search for massive long-lived particles decaying semileptonically in the LHCb detector

arXiv:1612.00945

Look for massive long-lived particles (LLP) in the mSUGRA model, where the neutralinos can decay in muon+jets. Signature is a displaced vertex.
LLP mass: [20-80] GeV, lifetime: [5-100] ps

In this paper a search for massive long-lived particles is presented, using proton-proton collision data collected by the LHCb detector at $\sqrt{s} = 7$ and 8 TeV, corresponding to integrated luminosities of 1 and 2 fb^{-1}, respectively. The event topology considered in this study is a displaced vertex with several tracks including a high p_T muon. This topology is found in the context of the minimal super-gravity (mSUGRA) realisation of the MSSM, with R-parity violation [13], in which the neutralino can decay into a muon and two jets. Neutralinos can be produced by a variety of processes. In this paper

LLP not so high mass, coupling to l+quarks
Doubly Charged Higgs

\[H^{±±} \rightarrow e^+e^- \]

Slides from M. D’Alfonso at HH
Conclusion

• We have taken only 3% of whole LHC/HL-LHC data. Expect also $\sqrt{s} = 14 \, TeV$ at some point.
• It is clear that LHC has put very high mass constraints on a lot of models.
• But we still look and find “strange” things also at much lower energies.
• Recent results from LHCb on LFV seems to point to a leptoquark.
• It shows that one can look for new physics also at lower energy and ep is a much “cleaner” environment compared to LHC.
• b- and c-tagging, tau reconstruction, long-lived particles important.

Also a lot of PDFs results from LHC by now. We at DESY are involved in W-charge asymmetry (u/d), W+charm (strange), jet cross sections (gluon at mid-high x), top