Asymmetry Measurement of the Electric Form Factor of the Neutron at $Q^2 = 1.16$ GeV2

Richard F. Obrecht
Hall A Collaboration Meeting 2018

January 23, 2018
INTRODUCTION

- A brief introduction to the physics goals of E02-013, otherwise known as G_E^n
- Overview of the experimental apparatus
- Summary of the analysis
- Preliminary results of G_E^n/G_M^n at $Q^2 = 1.16$ GeV2
Nucleon Form Factors

- Nucleon form factors arise by generalizing the typical vertex factor $-ie\gamma^\mu$ in OPEX:

$$\Gamma^\nu = \gamma^\nu F_1(q^2) + \frac{i\sigma^{\nu\alpha}q_\alpha}{2M} F_2(q^2)$$

- An unpolarized calculation incorporating the nucleon structure results in the Rosenbluth formula:

$$\left.\frac{d\sigma}{d\Omega}\right|_{\text{LAB}} = \frac{\alpha^2 \cos^2 \frac{\theta_e}{2}}{4E_e^2 \sin^4 \frac{\theta_e}{2}} \frac{E'_e}{E_e} \left[\frac{G_E^2 + \tau G_M^2}{1 + \tau} + 2\tau G_M^2 \tan^2 \frac{\theta_e}{2} \right],$$

where $\tau = \frac{Q^2}{4M^2}$, $G_E = F_1 - \tau F_2$ and $G_M = F_1 + F_2$.
Beam-Target Asymmetry

Polarize beam and target, and an asymmetry arises by flipping the beam helicity \(h = \pm 1 \):

\[
A_{\text{phys}} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} = -\frac{2\sqrt{\tau(1+\tau)} \tan\frac{\theta_e}{2}}{\frac{\tau}{\epsilon} + \Lambda^2} \left\{ P_x\Lambda + \sqrt{\tau \left[1 + (1+\tau) \tan^2\frac{\theta_e}{2} \right]} P_z \right\},
\]

\[
= \frac{\mathcal{B}\Lambda + \mathcal{C}}{\mathcal{D} + \Lambda^2}.
\]

- \(\Lambda \equiv G_E/G_M, P_x = \sin\theta^* \cos\phi^* \) and \(P_z = \cos\theta^* \)
- At leading order, \(A_{\text{phys}} \propto \Lambda \) if \(\theta^* = \pi/2 \) and \(\phi^* = 0 \) or \(180^\circ \)
INTRODUCTION TO E02-013

- Extract G^n_E via a beam-target helicity asymmetry measurement using the semi-exclusive reaction $^3\text{He}(\vec{e}, e'n)pp$
- The double-arm coincidence experiment took data at four Q^2 configurations:

<table>
<thead>
<tr>
<th>Q^2 [GeV2]</th>
<th>Days</th>
<th>E_b [GeV]</th>
<th>θ_{BB} [deg]</th>
<th>θ_{NA} [deg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.16</td>
<td>8</td>
<td>1.519</td>
<td>-56.3</td>
<td>35.74</td>
</tr>
<tr>
<td>1.72</td>
<td>9</td>
<td>2.079</td>
<td>-51.6</td>
<td>35.74</td>
</tr>
<tr>
<td>2.48</td>
<td>19</td>
<td>2.640</td>
<td>-51.6</td>
<td>30.25</td>
</tr>
<tr>
<td>3.41</td>
<td>33</td>
<td>3.291</td>
<td>-51.6</td>
<td>25.63</td>
</tr>
</tbody>
</table>

Table: Kinematic configurations of E02-013, red is unpublished.
Measurements of the Electric Form Factor of the Neutron up to $Q^2 = 3.4$ GeV2

Using the Reaction 3He($e, e' n$)pp

Spokespeople:

- Gordon Cates - University of Virginia
- Nilanga Liyanage - University of Virginia
- Bogdan Wojtsekhowski - Jefferson Lab
EXPERIMENTAL APPARATUS OVERVIEW
THE BigBite SPECTROMETER IN MC
Major Goals of the Analysis

Major tasks:

1. Find electron tracks, reconstruct the vertex and momentum
2. Reconstruct the nucleon cluster and calculate the momentum via ToF
3. Separate quasielastic events with a set of cuts
4. Identify the charge of the nucleon cluster

Then we may...

- Construct the raw asymmetry
- Correct for all appreciable experimental realities, *i.e.* events that contaminate (or dilute) the quasielastic neutral sample
Cuts on the invariant mass, the missing momentum components and the missing mass largely select the QE region for $Q^2 \approx 1.16 \text{ GeV}^2$.
The inelastic region is heavily suppressed by the cut selection, resulting in negligible inelastic corrections to A_{raw}.

A final cut of $0.8 < W < 1.15$ GeV is applied.
Nucleon Charge Identification

Side view of the neutron detector depicting the ideal scenario of charge identification within MC. The recoiling nucleons have a kinetic energy of 1.3 GeV prior to entering the detector.
Major Corrections to the Raw Asymmetry

The raw asymmetry for the QE neutral sample:

\[A_{\text{raw}} = \frac{N^+ - N^-}{N^+ + N^-}, \]

where \(N^{\pm} \) denotes the QE neutral count for \(\pm \) beam helicity.

A summary of the largest dilution factors:\(^1\)

- Accidental background: 5%
- Nitrogen in \(^3\)He target cell: 5%
- Protons misidentified as neutrons: 20%
- Nuclear effects + FSI (GEA): 10%

\(^1\)If interested, more details may be found in the Appendix.
Charge Misidentification

Notation: $\eta_{\text{true}}^{\text{obs}}$ where true is particle that left the target and obs is the result of charge ID $\Rightarrow \eta_p^p$ protons correctly ID'ed as protons

Simulation:

- Generate elastic eN coincidence events and compare to the results of the charge identification procedure (prev. slide)
- Calculate the probability that the true nucleon gets correctly identified

Data:

- Analyze the QE uncharged to charged ratio for three targets (H_2, ^3He, C) to constrain the three η ratios
- Need all three ratios to calculate the misidentification correction to A_{raw} for the uncharged and charged samples
Charge Misidentification Comparison

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Data</th>
<th>Simulation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{\eta_p^n}{\eta_p^p}$</td>
<td>0.021 ± 0.002</td>
<td>0.020 ± 0.001</td>
<td>Protons observed as neutrons</td>
</tr>
<tr>
<td>$\frac{\eta_p^n}{\eta_p^p}$</td>
<td>Undetermined</td>
<td>0.384 ± 0.001</td>
<td>Neutrons observed as protons</td>
</tr>
<tr>
<td>$\frac{\eta_p^n}{\eta_p^p}$</td>
<td>0.559 ± 0.027</td>
<td>0.636 ± 0.001</td>
<td>Neutrons observed as neutrons</td>
</tr>
<tr>
<td>D_p</td>
<td>0.812 ± 0.017</td>
<td>0.839 ± 0.001</td>
<td>Proton dilution factor</td>
</tr>
</tbody>
</table>

Table: Charge ID results for the data and the simulation.

The multiplicative correction to the neutral A_{raw} due to proton misidentification is given by D_p.

Figure: Double polarization data: $^3\overline{\text{He}}(\overline{e}, e'n)$ (blue markers), $\overline{d}(\overline{e}, e'n)$ (green markers), and $d(\overline{e}, e'n)$ (red markers). Largest contributions to systematic uncertainty come from target and beam polarization measurements. The error bar in this work is the total uncertainty.
Systematic Error Budget

<table>
<thead>
<tr>
<th>Quantity</th>
<th>δ/G_E^n</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>δG_E^n</td>
<td>0.126</td>
<td>Total uncertainty contribution</td>
</tr>
<tr>
<td>δ_{sys}</td>
<td>0.105</td>
<td>Systematic</td>
</tr>
<tr>
<td>δ_{stat}</td>
<td>0.070</td>
<td>Statistical</td>
</tr>
<tr>
<td>$\delta P_{3\text{He}}$</td>
<td>0.077</td>
<td>Target polarization</td>
</tr>
<tr>
<td>δP_{beam}</td>
<td>0.040</td>
<td>Beam polarization</td>
</tr>
<tr>
<td>δD_{bk}</td>
<td>0.028</td>
<td>Background dilution</td>
</tr>
<tr>
<td>δD_p</td>
<td>0.028</td>
<td>Proton dilution</td>
</tr>
<tr>
<td>δG_M^n</td>
<td>0.025</td>
<td>Error from chosen G_M^n</td>
</tr>
<tr>
<td>δD_{FSI}</td>
<td>0.025</td>
<td>Nuclear corrections</td>
</tr>
<tr>
<td>δ_{other}</td>
<td>0.023</td>
<td>Sum of remaining contributions</td>
</tr>
</tbody>
</table>

Contributions to the systematic uncertainty of G_E^n from individual sources, and presented as a fraction of G_E^n.
Appendix
Major Corrections: $A_{\text{RAW}} \rightarrow A_{\text{PHYS}}$

<table>
<thead>
<tr>
<th>$\langle Q^2 \rangle$ [GeV2]</th>
<th>1.16</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>W [GeV]</td>
<td>0.8 – 1.15</td>
<td>Invariant Mass</td>
</tr>
<tr>
<td>p_\perp [GeV]</td>
<td>< 0.150</td>
<td>Missing \perp momentum</td>
</tr>
<tr>
<td>p_\parallel [GeV]</td>
<td>< 0.250</td>
<td>Missing \parallel momentum</td>
</tr>
<tr>
<td>m_{miss} [GeV]</td>
<td>< 2</td>
<td>Missing mass</td>
</tr>
<tr>
<td>$\langle P_e \rangle$</td>
<td>0.870 ± 0.020</td>
<td>Longitudinal beam polarization</td>
</tr>
<tr>
<td>$\langle P_{\text{He}} \rangle$</td>
<td>0.416 ± 0.019</td>
<td>Polarization 3He nucleus</td>
</tr>
<tr>
<td>D_{bkgr}</td>
<td>0.949 ± 0.029</td>
<td>Accidental background</td>
</tr>
<tr>
<td>D_{N_2}</td>
<td>0.954 ± 0.005</td>
<td>Nitrogen in target</td>
</tr>
<tr>
<td>D_p</td>
<td>0.812 ± 0.017</td>
<td>Proton contamination</td>
</tr>
<tr>
<td>D_{in}</td>
<td>0.980 ± 0.011</td>
<td>Inelastic contamination</td>
</tr>
<tr>
<td>D_{FSI}</td>
<td>0.896 ± 0.013</td>
<td>Nuclear effects + FSI (GEA)</td>
</tr>
</tbody>
</table>

\[
A_{\text{phys}} = \frac{1}{P \cdot D} \left(A_{\text{raw}} - \sum A_{\text{corr}} \right),
\]

where A_{corr} are corrections to A_{raw} which are associated to a dilution factor D within the table, and $P = P_e P_{\text{He}}$.

\[
A_{\text{phys}} = \frac{1}{P \cdot D} \left(A_{\text{raw}} - \sum A_{\text{corr}} \right),
\]
TARGETS OF E02-013

- Polarized 3He is used as an effective neutron target as the symmetric S-state dominates the ground-state in which proton spins tend to cancel ⇒ $\sim 86\%$ of the nuclear spin is carried by the neutron
- Hybrid spin-exchange optical pumping (alkali vapors Rb and K) was used to polarize the 3He target
- Target cells exceeded polarizations of 50%, operating at a pressure of ~ 10 atm with a beam current of $8\mu A$
- Other targets included BeO-C foils and an empty ref. cell that may be filled with H_2 / N_2
- Targets are mounted to a ladder which is suspended in a 0.25” thick iron “target-box”
The **BigBite Spectrometer**

- The purpose is to measure the four momentum of the quasielastically scattered electron
- BigBite is a large dipole magnet that subtends ~ 76 msr and accepts scattered e^- in the range $0.6 < p < 1.8$ GeV.
- Three multiwire drift chambers (15 wire planes) reconstruct the scattered track post magnetic deflection
- A segmented lead-glass preshower + shower package for triggering and pion rejection. Can reconstruct track energy and is used to confine search region of track recon.
- A hodoscope consisting of 13 scintillator paddles (resolution of 35 ps/channel) is used for event timing information
The Neutron Detector

- The purpose is to measure the momentum of the recoiling nucleons in coincidence via ToF and to identify the charge
- Designed to match the acceptance of BigBite at the largest Q^2 point
- A time of flight resolution of 300 ps has been obtained
- Detector consists of two “veto” layers (charge ID) and seven neutron layers (ToF)
- The veto layers are built out of 48 rows of long/short scintillating bars with two PMTs per row
- The neutron layers consist of rows of scintillating bars (1 per row) with two PMTs per row
The two veto layers (charge identification) and the seven neutron layers (nucleon ToF)
Background Subtraction

- Shift data in time before QE cuts are applied ⇒ adjust β:

$$\beta_{bk} = \frac{1}{\beta_{QE}} + 0.8 \approx 0.5 \implies \beta_{bk}^{-1} = 2$$

where 0.8 is a shift parameter and $\beta_{QE} = 0.8$.

- Apply QE cuts, and the result is random background
RAW ASYMMETRY

Top Panel:

- BB single arm trigger rate T2 is sensitive to beam helicity
- Total sign = (target sign) × (precession sign) × (HWP sign)

Bottom Panel:

- Background corrected raw asymmetry
- Need to apply additional corrections to remove unwanted events
NITROGEN DILUTION

- No N$_2$ data ⇒ use C foils and exclude the BeO foil

\[
D_{N_2} = 1 - \frac{\Sigma(C) - \Sigma_{\text{back}}(C)}{\Sigma - \Sigma_{\text{back}}} \frac{Q(\text{He})}{Q(C)} \frac{\rho_{N_2}(\text{He})}{\rho_C(C)} \frac{t_{\text{He}}}{t_C}
\]
Vertex Resolution

\[\sigma_{v_z} \approx 6.5 \text{ mm} \]
MOMENTUM RESOLUTION

\[\sigma_p \approx 1\% \text{ or } 10 \text{ MeV} \]
BB ENERGY RESOLUTION

\[\sigma \approx 7.5\% \]

Entries 16214
\[\chi^2 / \text{ndf} \quad 123.9 / 82 \]
Constant 677.7 \(\pm \) 6.8
Mean \(-0.0122 \pm 0.0006\)
Sigma \(0.07554 \pm 0.00047\)
NA ToF Resolution

\[\sigma_{NA} \approx 300 \text{ ps} \]
Corrections

- Accidental Background: 2%
- Nitrogen dilution: 5%
- Misidentified protons: 20%
 - Evaluated through data and Geant4 monte carlo
- Inelastic Events: 0 - 15%
 - Evaluated through Geant4 monte carlo + MAID
- Nuclear effects + FSI: 5%

Figure: S. Riordan 2012 SBS Review
In case I forget...

\[t_{\text{ToF,ex}} = \frac{\ell}{c} \sqrt{1 + \left(\frac{M}{|\vec{q}|} \right)^2} \]

\[\beta = \frac{v}{c} = \frac{|\vec{\ell}|}{c \ t_{\text{ToF}}} \]

\[p_{\text{na}} = \frac{M\beta}{\sqrt{1 - \beta^2}} \]

\[\delta p = \frac{M c \beta^2}{\ell} \left(\frac{1}{(1 - \beta^2)^{\frac{3}{2}}} \right) \delta t \]