DVCS collaboration meeting
January 26th 2018
Calorimeter analysis update
Frédéric Georges
π^0 calibration
π⁰ calibration

- Done for all kinematics (Fall 2014, Spring 2016, Fall 2016)

- Issue: loss of gain sometime too fast for π⁰ calibration (usually: after long down time, or at the start of a run period)
π⁰ calibration

- Linear interpolation/extrapolation: did not work
- Exponential fit: did not work (Later realized I made a mistake in my formula. Might have worked.)
- Empirical correction:
 - **Approximation**: loss of gain similar for all (most of) the blocks
 - → Variation of π⁰ invariant mass proportional to the variation of π⁰ calibration coefficients
 - → **Correction run by run of π⁰ calibration coefficients** by a factor \(\frac{0.134977 \text{ GeV}}{\text{reconstructed π⁰ mass}} \)

SQL DB updated (France & Jlab)
\(\pi^0 \) contamination subtraction
• DVMP event: $e p \rightarrow e p \pi^0$
• $\pi^0 \rightarrow \gamma \gamma$
• If 1 single γ is detected in the calorimeter: looks like a DVCS event $e p \rightarrow e p \gamma$
• Missing mass can be compatible with DVCS if missed γ had low energy
• Contamination must be removed
principle

- Real data: $ep \rightarrow ep\pi^0$ events identification: 2 γ in the calorimeter & invariant mass compatible with π^0
- For each detected π^0: simulation of 5000 decays $\pi^0 \rightarrow \gamma\gamma$ (Monte-Carlo generates random γ directions and energies, projections on calorimeter surface)
- Check if γ are detected (Energy threshold, geometrical cuts) $\Rightarrow 0\gamma - 1\gamma - 2\gamma$ cases
- Estimation of the proportion of simulated decays where a single γ is detected
- $\Rightarrow \pi^0$ contamination
Description of the subtraction process

• Code basis from Camille Desnault

• Step 1 : From real data, π^0 identification
 • Reads rootfiles after clustering (ana.C).
 • Look at ntuple ntu2 : 2 clusters in the calorimeter
 • Select π^0 with “Cut1” :
 • Energy threshold cuts on both clusters : run by run and block by block :
 \[\text{TriggerSim} \ast \pi^0 \text{coefficients} \ast \alpha \]
 \[\alpha = 1 \quad \alpha = \frac{\text{elas}_\text{coe}_2_\text{same}_\text{HV}}{\text{elas}_\text{coe}_1} \quad \alpha = 1 \]
 \[
 \begin{array}{|c|c|c|}
 \hline
 \text{Elastic coefficients 1} & \text{Elastic coefficients 2}_\text{same}_\text{HV} & \text{Elastic coefficients 2}_\text{new}_\text{HV} \\
 \hline
 \end{array}
 \]
 • Geometrical cuts : removed edges of the calorimeter (3 cm (= 1 block)):
 - $-21 \text{cm} < x_c < 12 \text{cm}$
 - $-21 \text{cm} < y_c < 21 \text{cm}$
 • π^0 invariant mass cut : fitted π^0 invariant mass for a few runs of the kinematic, cut at $\pm 3\sigma$.
Description of the subtraction process

• Step 2 : For each identified π^0 : Monte-Carlo simulation of 5000 decays $\pi^0 \rightarrow \gamma\gamma$
 • Decay in the π^0 center of mass frame : polar angles θ and ϕ generated uniformly : θ between 0 and π, ϕ between 0 and 2π. Each γ has the energy $E_{\pi}/2$.
 • Lorentz boost along the π^0 momentum
 • Projection on the calorimeter (+ shower depth correction)
 • Code basis from Malek Mazouz
 • Check if γ detected : same as “Cut1”
 • Count the number of cases where $0 – 1 – 2 \gamma$ are detected : $N_{0\gamma}$, $N_{1\gamma}$, $N_{2\gamma}$ out of the 5000 decays
 • For each π^0, save $N_{0\gamma}$, $N_{1\gamma}$, $N_{2\gamma}$ and 1γ case as if real DVCS data (cf. ana.C)
Description of the subtraction process

• Step 3 : Subtraction.
 • Simulated data from the π^0 subtraction process must be normalized by $\frac{1}{5000} \cdot \frac{1}{N_{2\gamma}} = \frac{1}{N_{2\gamma}}$.
 • “Cut2” : same cuts must be applied to real data and simulated subtraction data.
 • Energy threshold (preliminary : clustering energy threshold)
 • Geometrical cuts : An “octagonal” cut must be applied to account for inefficiencies of the subtraction method in the corners (to be determined)
 • Other cuts can be added…
Method checking against Monte-Carlo

- **Goal**: reproduce the efficiency plot from Maxime Defurne’s thesis to check the subtraction results against simulation.
- **Used Maxime Defurne’s thesis Monte Carlo simulation**:
 - Generates π^0 uniformly (polar angles + energy) & simulates a decay & projection on the calorimeter
 - Ran π^0 subtraction on 2-γ events & compared results to 1-γ events

\[\pi^0 \text{ subtraction efficiency, for kin48_2 (run 13000)} \]
\[(\text{with cut } M_{x^2} < 1.35 \text{ GeV}) \]
Method checking against Geant4

- Used Geant4 simulation from Rafayel (pi0_2010/no_esmear)
 - Modification to save 1-cluster events too
 - Tested a 12 GeV kinematic (run 220 ~kin48_2)
 - Tested a 6 GeV kinematic (run 9124, kin3high)
- GOOD

\[\pi^0 \text{ subtraction efficiency, for } \sim \text{kin48}_2 \text{ (run 220)} \]
\[\text{(with cut } M_x^2 < 1.2 \text{ GeV)} \]

\[\pi^0 \text{ subtraction efficiency, for kin3high (run 9124)} \]
• Discussion on Cut1 geometrical cut: Do we cut the edges of the calorimeter (3cm) or not?
 • Pros: γ energy reconstruction on the edges of the calorimeter is biased by energy leaks.
 • Cons: In the simulation, 2-γ events can be mistaken for 1-γ events

Real data:
1. 2 clusters detected: 2-γ event
2. During data analysis: 1 γ is on the edge of the calorimeter: whole event discarded.
3. Final situation: no π^0 contamination, no event kept

Simulated subtraction data:
1. 2 clusters: should be a 2-γ event
2. But 1 γ is on the edge of the calorimeter: γ discarded. But the other γ is kept.
3. Final situation: 1-γ event, counted as a contaminating π^0 event
4. Cannot discard both γ and count a 0-γ event: false
5. Cannot discard whole event as if did not exist either.

• Estimation from data: 1/3 of π^0 events are in this situation
• If cut $Mx^2 < 1.35$ GeV: 0.5% only. Error seems acceptable.
Octagonal cut

- Proposition for all kinematics:
 \[
 \begin{align*}
 y_c &\leq 20 \\
 y_c &\geq -20 \\
 x_c &\leq 11 \\
 x_c &\geq -20 \\
 y_c - x_c &\leq 33 \\
 y_c + x_c &\leq 24 \\
 y_c + x_c &\geq -33 \\
 y_c - x_c &\geq -24
 \end{align*}
 \]

\(\pi^0 \) subtraction efficiency, for run 12508 (kin48_1)

\(\pi^0 \) subtraction efficiency, for run 13000 (kin48_2)
Octagonal cut

π^0 subtraction efficiency, for run 12508 (kin48_1)

π^0 subtraction efficiency, for run 12838 (kin48_3)

π^0 subtraction efficiency, for run 13000 (kin48_2)

π^0 subtraction efficiency, for run 13100 (kin48_4)

Geant4 issue?
Octagonal cut

\[\pi^0 \text{ subtraction efficiency, for run 14150 (kin36_2)} \]

\[\pi^0 \text{ subtraction efficiency, for run 14476 (kin36_3)} \]

\[\pi^0 \text{ subtraction efficiency, for run 14270 (kin60_1)} \]

\[\pi^0 \text{ subtraction efficiency, for run 14528 (kin60_3)} \]
Octagonal cut

\[\pi^0 \]

subtraction efficiency, for run 10553 (kin36_1)

Geant4 issue?
Geant4 issue with kin36_1, kin36_3 and kin48_4

Geant4 simulation (1 single photon detected case) for kin36_1 (top left) kin48_4 (top right) and kin36_3 (bottom left) :
Photons position yc:xc in the calorimeter

Coverage issue ?

Calorimeter angle / distance :
kin36_1 : 11.3 deg / 164 cm : small angle & distance combo ?
kin48_4 : 9.87 deg / 250 cm : smallest angle ?
kin36_3 : 10.46 deg / 250 cm : small angle ?
Conclusion : status and outlook

• π^0 calibration complete + SQL DB updated (France & Jlab)
• π^0 subtraction method validated with Maxime Defurne’s Monte-Carlo simulation and Geant4 simulation
• π^0 subtraction done for all 12 GeV data (Fall 2014, Spring 2016, Fall 2016).
 • Subtraction rootfiles are available in France and can be copied at Jlab.

• TODO list (in progress) :
 • Define/choose octagonal cuts for every kinematics
 • Identify & Fix Geant4 calorimeter coverage issue for kin36_1 and kin48_4
 • hypothesis : generation phase space too small

• NEXT :
 • Accidentals subtraction (fast)
 • Geant4 & Monte Carlo simulation (acceptance): missing mass calibration + smearing
 • Cross-sections extraction