Status of understanding the proton charge radius

Carl E. Carlson
William & Mary

8th Workshop of the APS Topical Group on Hadronic Physics
Denver, Colorado
10–12 April 2019
Proton radius

Talk plan:
- Show newest results close to the beginning
- Then proceed
 - Bit of history: ways to measure proton radius
 - Modern times and scattering data
 - Re-analyses of data: controversy
 - Deuteron measurements: lingering problem?
 - Two photon exchange corrections: a bar to the future?
- Closing comments
The proton radius has been (to date) measured using:

- electron-proton elastic scattering
- level splittings in traditional hydrogen
- level splittings, specifically the Lamb shift, in muonic hydrogen

The early results were incompatible, and gave about a 6σ discrepancy, summarized on the next slide. (Early here means before 2016.)
Pre-2016 proton radius results

- old ep atomic plus scattering avg., 0.8751 ± 0.0061 fm (CODATA 2014)

(Newer experiments coming)
The newest results

Post 2016 electronic results, with older benchmarks

- $1S-2S + 2S-4P$
- $1S-2S + 1S-3S$
- $1S-2S + 1S-3S$
- $2S-2P$
- $1S-2S + 1S-3S$
- ep scattering

- Old ep atomic plus scattering avg., 0.8751 (61) fm (CODATA 2014)
- μH Lamb shift (2010, 2013)

- MPQ 2017
- LKB 2018
- York 2018
- PRad 2018
- MPQ 2018
- MPQ 2018

proton charge radius (fm)
Two refereed journal references, four public conference talks

You can make your own!

BTW, unweighted average of ≥ 2016 electron-based measurements is 0.842 fm.
How did we get here

Comments on measurements from electron scattering and atomic physics
Elastic electron scattering, $e^- p \rightarrow e^- p$

- There are form factors for electric (E) and magnetic (M) charge distributions.
- Cross section is given by

$$\frac{d\sigma}{d\Omega} \propto G_E^2(Q^2) + \frac{\tau}{\varepsilon} G_M^2(Q^2)$$

$$[\tau = Q^2/4m_p^2; \quad 1/\varepsilon = 1 + 2(1 + \tau) \tan^2(\theta_e/2)]$$

- Low Q^2 is mainly sensitive to G_E.
- DEFINE (for historical reasons) charge radius by,

$$R_E^2 = -6 \left(\frac{dG_E}{dQ^2}\right)_{Q^2=0}$$

- From real data, need to extrapolate to $Q^2 = 0$.
Scattering data

- Much data from 20th century, but currently biggest and best data set is Mainz (2010).
- Bernauer et al., PRL 2010 and later articles.
- Low Q^2 range, 0.004 to 1 GeV2
- From their eigenanalysis,

$$R_E \text{ or } R_P = 0.879(8) \text{ fm}$$
Proton radius affects atomic energy levels.

\[E = E_{\text{QED}} + \delta_{\ell 0} \frac{2m_e^3 Z^4 \alpha^4}{3n^3} R_E^2 + E_{\text{TPE}} + \text{very small corrections} \]

- \(E_{\text{TPE}} = \) two photon exchange corrections (calculated: will discuss)
- Accurate measurements of energy splitting and accurate calculation of QED effects allows determination of proton radius.
Just in case: Hydrogen energy levels

Definitely not to scale:

- Scale for big splittings is Rydberg, Ryd = $\frac{1}{2} m_e \alpha^2 \approx 13.6$ eV.
- Fine structure and Lamb shift are $\mathcal{O}(\alpha^2 \text{Ryd})$.
- Hyperfine splitting is $\mathcal{O}(m_e/m_p) \times (\alpha^2 \text{Ryd})$.
Requirements for calculation

- **QED**

\[
E_{\text{QED}} = \frac{1}{2} m_r \alpha^2 \left[1 + \ldots + \mathcal{O} \left(\frac{\alpha}{2\pi} \right)^3 + \mathcal{O} \left(\frac{\alpha}{2\pi} \right)^4 + \ldots \right]
\]

- Leading proton size correction

\[
\Delta E_{\text{proton size}} = \frac{1}{2} m_r \alpha^2 \cdot \frac{4\alpha^2}{3n^3} \cdot (m_r R_E)^2
\]

for \(R_E = 1\ \text{fm} \) and \(n = 2 \).

- Hence need \(\mathcal{O}(\alpha/2\pi)^4 \) corrections. First available about year 2000.
Now can get proton radius from atomic splitting. As of early 2016:

- Crucial observation:
 \(R_p \) from electron scattering and from electronic hydrogen agreed.
Comment regarding R_E and atomic physics

- Crucial: why in atomic physics do we use the derivative of G_E to define the proton radius? Why not, for example, derivative of F_1?
- Answer by doing the relativistic perturbation theory calculation for proton size effect on atoms.
- Indeed find effect $\propto G'_E(Q^2)|_{Q^2 = 0}$
- Since atomic results measures $G'_E(0)$, quote $R_p = R_E$, to match.
Can do analogous measurements with muonic atoms.
Muons weigh $200 \times$ what electron does. Muons orbit $200 \times$ closer. Proton looks $200 \times$ bigger and proton size effects are magnified.
Opportunity to obtain more accurate proton radius, despite short muon lifetime.

Done by CREMA specifically for the $2S-2P$ splitting (Lamb shift)
Obtained

$$R_p = 0.84087(39) \text{ fm}$$
Repeat

\[R_p = 0.84087(39) \text{ fm} \]

- Uncertainty limit ca. 20X better than electronic results.

Current box:

<table>
<thead>
<tr>
<th>(fm)</th>
<th>atomic</th>
<th>scattering</th>
</tr>
</thead>
<tbody>
<tr>
<td>electron</td>
<td>0.8759 (77)</td>
<td>0.879(8)</td>
</tr>
<tr>
<td>muon</td>
<td>0.84087 (39)</td>
<td>no data yet</td>
</tr>
</tbody>
</table>
Two thrusts:

1. new experiments
2. reanalysis of old data
New and future scattering experiments

- PRad (JLab) does electron scattering down to $Q^2 = 0.0002$ GeV2. Mentioned earlier: $R_E = 0.831 \pm \text{ca. 2\%}$. Hear Haiyan Gao talk Friday, 10:30 am.

- Initial state radiation experiment at Mainz. First results published, more accurate results to come.

- A2 experiment at Mainz, observing final proton in TPC

- MUSE, Muon scattering experiment at PSI will do both muon (first time, at this accuracy) and electron scattering, down to 0.002 GeV2. Expect relative error between e and μ output radii about 0.7\%. “Production run” to start July this year.

- Proton radius from μ scattering at COMPASS, using a TPC to see the final proton
Discussions of new fits to old data

Friday the 13th

Physics Seminar

Dr. Douglas Higinbotham

Jefferson Laboratory

Why the proton radius is smaller in Virginia

Abstract:

Recent Muonic hydrogen Lamb shift measurements have determined the proton’s charge radius to be 0.84 fm, a result systematically different from the CODATA value of 0.88 fm from atomic hydrogen Lamb shift and recent electron scattering results. I will review the history of the electron results, starting from the 1963 review article by Hand et al. with its 0.81(1) fm standard dipole radius, and track the evolution of the proton charge radius up to the recent 0.88(1) fm results from Mainz. I will then discuss why groups in Virginia (JLab, UVA, and W&M) are extracting a radius from the electron scattering data close to the Muonic result. I will also show how PRad will hopefully settle the issue.

Friday, May 13, 2016

11:00 am

CEBAF Auditorium
But not limited to one locale

And still continuing

A few references (apologies . . .)

<table>
<thead>
<tr>
<th>minimalist</th>
<th>more extended</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meissner et al. (2015)</td>
<td>original Mainz (Bernauer et al.)</td>
</tr>
<tr>
<td>Horbatsch & Hessels (2016)</td>
<td>Hill & Paz</td>
</tr>
<tr>
<td>Alarcón, Higinbotham, et al. (2019)</td>
<td></td>
</tr>
</tbody>
</table>
Basic minimalist viewpoint: Charge radius requires extrapolation to $Q^2 = 0$. Fits with lots of parameters tend to be less smooth outside data region. Fits to full data set generally require lots of parameters. For charge radius, better to fit to narrower, low Q^2 region of data. Have fewer parameters, less “wiggly” functions, and more faith in extrapolations.

\[G_{Ep}(Q^2) \]

slope gives $R_E = 0.84 (1\%)$ fm
But still unsettled: fitters obtaining larger radii have not recanted

In fact, may consult “Avoiding common pitfalls and misconceptions in extractions of the proton radius,” 1606.02159

Truly exciting: if larger radius from electrons is correct, then need explanation of difference between electron and muon interactions: we are into beyond the standard model physics (BSM).

Hope: Studies are proceeding with serious testing on pseudodata and with analysis of reliability and robustness of fit procedures, and may lead to some criteria for agreement.
Proton results from deuteron measurements

- Also exciting: The $1S$ to $2S$ splitting in both hydrogen and deuterium can be measured to 15 figures! (The $2S$ is metastable, hence narrow, leaving no fuzziness as to where it is.)

- Only things that cannot be well calculated in difference are the radius terms. Hence get very accurate radius difference (called “isotope shift”):

 \[R_d^2 - R_p^2 = 3.82007 (65) \text{ fm}^2 \]

- Used by MPQ 2018 in figure seen earlier.
merely a reminder

Post 2016 electronic results, with older benchmarks

- $1S-2S + 2S-4P$
- $1S-2S + 1S-3S$
- $1S-2S + 1S-3S$
- $2S-2P$
- $1S-2S + 1S-3S$
- ep scattering

- MPQ 2017
- LKB 2018
- MPQ 2018
- York 2018
- MPQ 2018(d)
- PRad 2018

- μH Lamb shift (2010, 2013)
- old ep atomic plus scattering avg., 0.8751 (61) fm (CODATA 2014)
If the electronically measured radii for the proton come down, is there any lingering problem?

Maybe . . .

CREMA has also measured the deuteron radius,

\[R_d = 2.12562 (78) \text{ fm} \]

Using the muonic hydrogen value and at the isotope shift, get

\[R_d = 2.12771 (22) \text{ fm} \]

which is 2.6 \(\sigma \) higher.

Worried?
Two Photon Exchange (TPE): Dispersive calculation

- Need the box diagram with two photons
- Some calculate by noting putting the intermediate states on shell (a) gives the Imaginary part of the whole diagram, and (b) means each half of the diagram is an amplitude for a real scattering process, and hence can be gotten from scattering data.

\[
\begin{array}{c}
\mu(k) \quad q \downarrow \quad 3^\text{He}(p) \quad q \uparrow \quad \mu(k) \\
\end{array}
\]

- What matters is the lower vertex, so can use electron scattering data.
- Mostly need low \(Q^2\), low energy data
- Reconstruct whole diagram using dispersion relations.
Begin with the proton

- Theory for Lamb shift splitting, with numbers for proton,
 \[
 \Delta E_{L}^{\text{theo}} = \Delta E_{\text{QED}} - \frac{m^{3}Z^{4}\alpha^{4}}{12}R_{p}^{2} - \Delta E_{\text{TPE}}
 \]
 \[
 = 206.0336(15) - 5.2275(10)R_{p}^{2} + 0.0332(20)
 \]
 (units are meV and fm)

- TPE number from Birse and McGovern, following CEC and Vdh; ongoing consideration using other techniques
- Faith,
 \[
 \Delta E_{L}^{\text{theo}} = \Delta E_{L}^{\text{expt}} = 202.3706(23) \text{ meV}
 \]

- Solve,
 \[
 R_{p} = 0.84087(39) \text{ fm} \quad [0.038\%]
 \]

- If the TPE were perfect,
 \[
 R_{p} = 0.84087(32) \text{ fm}
 \]

- Conclude: for the proton theorists have done their job. Uncertainty in TPE not dominant.
Jump to other light nuclei: e.g., ^4He

- Interested for similar reasons: want to find radius discrepancy
- Compare radius from electron scattering to radius from μ Lamb shift
- From electron scattering $R_\alpha = 1.681(4)$ fm [0.25%]
- If this is the right radius, can calculate the ^4He finite size energy shift. The 0.25% uncertainty becomes an predicted energy shift uncertainty
 \[
 \delta E_{fs}^{^4\text{He}} = 1.42 \text{ meV}
 \]
- We and nuclear theorists using entirely different method calculate for the TPE,
 \[
 \begin{array}{ccc}
 \text{how} & \text{who} & \Delta E_{\text{TPE}} \text{ (meV)} \\
 \text{Nuclear potentials} & \text{Hernandez et al. (2016)} & -9.58(38) \\
 \text{Dispersion theory} & \text{CEC, Gorchtein, Vanderhaeghen} & -12.23(xx)
 \end{array}
 \]
• **Conflict! (BTW, we were in good agreement for 3He)**

• With a split-the-difference overall error bar,

$$\text{uncertainty } (E_{\text{TPE}}) \approx 1.5 \text{ meV}$$

• The muonic Lamb shift measurement cannot beat the electron radius scattering measurement because of the two-photon correction uncertainties. Ugh.

• **R. Pohl: “You are killing our experiment,”**
- Remarkable: After 9 years, the problem shows signs of being settled.

- Interesting: little discussion of the correctness of the μ-H Lamb shift data.

- Radius results from electron scattering currently mixed, both experimentally (PRad vs. Mainz) and in reanalyses. More experiments coming.

- Most recent ordinary hydrogen measurements of radius agree with results of level splitting in μ-hydrogen.

- Either
 - The puzzle isn't a puzzle: The electron based radius measurements are reducing to the muonic value.
 - The scattering analysis is under discussion, and more data coming
 - The newer spectroscopy measurements are giving the smaller radius.
 - Those who insist on a large radius from electrons and a smaller one from muons have to be all in on a BSM explanation of the puzzle.
For us in the field

- Possibility the problem is settled
- Some mop-ups:
 - Resolve conflicts in the analysis of the full set of electron scattering data
 - Resolve the remaining deuteron conflict
 - Improve the 4He TPE calculation
Beyond the end
Averages from the Committee on Data for Science and Technology (CODATA)
There have been 8 CODATA reports.

<table>
<thead>
<tr>
<th>Year</th>
<th>Proton radius (fm)</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>0.8751(61)</td>
<td>mostly atomic</td>
</tr>
<tr>
<td>2010</td>
<td>0.8775(51)</td>
<td>"</td>
</tr>
<tr>
<td>2006</td>
<td>0.8768(69)</td>
<td>"</td>
</tr>
<tr>
<td>2002</td>
<td>0.8750(68)</td>
<td>"</td>
</tr>
<tr>
<td>1998</td>
<td>0.8545(120)</td>
<td>election scattering</td>
</tr>
<tr>
<td>1986</td>
<td>–</td>
<td>no R_E quoted</td>
</tr>
<tr>
<td>1973</td>
<td>–</td>
<td>"</td>
</tr>
<tr>
<td>1969</td>
<td>0.805(11)</td>
<td>electron scattering</td>
</tr>
</tbody>
</table>

(Only for 2002 and later is the proton radius among the constants CODATA provided recommended values for.)

What happened in or about year 2000?
Re the $2S-4P$ splitting measurement

- “MPQ 2017” announced at proton radius workshop June 2016

- Data heard around the world,

$$R_p(2S-4P) = 0.8297(91) \text{ fm}$$

- Now have proton radius puzzle for ordinary hydrogen all by itself!